Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008536

ABSTRACT

Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of ß-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , Tumor Escape , beta Catenin , rab27 GTP-Binding Proteins , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Exosomes/metabolism , Exosomes/genetics , beta Catenin/metabolism , beta Catenin/genetics , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Cell Line, Tumor , Tumor Escape/genetics , rab27 GTP-Binding Proteins/metabolism , rab27 GTP-Binding Proteins/genetics , Tumor Microenvironment/immunology , Mutation , Gene Expression Regulation, Neoplastic
2.
Res Diagn Interv Imaging ; 10: 100046, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39077731

ABSTRACT

Objectives: Non-invasive subtyping of hepatocellular adenomas (HCA) remains challenging for several subtypes, thus carrying different levels of risks and management. The goal of this study is to devise a multivariable diagnostic model based on basic clinical features (age and sex) combined with MRI-radiomics and to evaluate its diagnostic performance. Methods: This single-center retrospective case-control study included all consecutive patients with HCA identified within the pathological database from our institution from January 2003 to April 2018 with MRI examination (T2, T1-no injection/injection-arterial-portal); volumes of interest were manually delineated in adenomas and 38 textural features were extracted (LIFEx, v5.10). Qualitative (i.e., visual on MRI) and automatic (computer-assisted) analysis were compared. The prognostic scores of a multivariable diagnostic model based on basic clinical features (age and sex) combined with MRI-radiomics (tumor volume and texture features) were assessed using a cross-validated Random Forest algorithm. Results: Via visual MR-analysis, HCA subgroups could be classified with balanced accuracies of 80.8 % (I-HCA or ß-I-HCA, the two being indistinguishable), 81.8 % (H-HCA) and 74.4 % (sh-HCA or ß-HCA also indistinguishable). Using a model including age, sex, volume and texture variables, HCA subgroups were predicted (multivariate classification) with an averaged balanced accuracy of 58.6 %, best=73.8 % (sh-HCA) and 71.9 % (ß-HCA). I-HCA and ß-I-HCA could be also distinguished (binary classification) with a balanced accuracy of 73 %. Conclusion: Multiple HCA subtyping could be improved using machine-learning algorithms including two clinical features, i.e., age and sex, combined with MRI-radiomics. Future HCA studies enrolling more patients will further test the validity of the model.

5.
JHEP Rep ; 6(2): 100913, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38304236

ABSTRACT

Background & Aims: Hepatocellular adenomas (HCAs) are rare, benign, liver tumours classified at the clinicopathological, genetic, and proteomic levels. The ß-catenin-activated (b-HCA) subtypes harbour several mutation types in the ß-catenin gene (CTNNB1) associated with different risks of malignant transformation or bleeding. Glutamine synthetase is a surrogate marker of ß-catenin pathway activation associated with the risk of malignant transformation. Recently, we revealed an overexpression of glutamine synthetase in the rims of exon 3 S45-mutated b-HCA and exon 7/8-mutated b-HCA compared with the rest of the tumour. A difference in vascularisation was found in this rim shown by diffuse CD34 staining only at the tumour centre. Here, we aimed to characterise this tumour heterogeneity to better understand its physiopathological involvement. Methods: Using mass spectrometry imaging, genetic, and proteomic analyses combined with laser capture microdissection, we compared the tumour centre with the tumour rim and with adjacent non-tumoural tissue. Results: The tumour rim harboured the same mutation as the tumour centre, meaning both parts belong to the same tumour. Mass spectrometry imaging showed different spectral profiles between the rim and the tumour centre. Proteomic profiling revealed the significant differential expression of 40 proteins at the rim compared with the tumour centre. The majority of these proteins were associated with metabolism, with an expression profile comparable with a normal perivenous hepatocyte expression profile. Conclusions: The difference in phenotype between the tumour centres and tumour rims of exon 3 S45-mutated b-HCA and exon 7/8-mutated b-HCA does not depend on CTNNB1 mutational status. In a context of sinusoidal arterial pathology, tumour heterogeneity at the rim harbours perivenous characteristics and could be caused by a functional peripheral venous drainage. Impact and implications: Tumour heterogeneity was revealed in ß-catenin-mutated hepatocellular adenomas (b-HCAs) via the differential expression of glutamine synthase at tumour rims. The combination of several spatial approaches (mass spectrometry imaging, genetic, and proteomic analyses) after laser capture microdissection allowed identification of a potential role for peripheral venous drainage underlying this difference. Through this study, we were able to illustrate that beyond a mutational context, many factors can downstream regulate gene expression and contribute to different clinicopathological phenotypes. We believe that the combinations of spatial analyses that we used could be inspiring for all researchers wanting to access heterogeneity information of liver tumours.

6.
Cell Death Dis ; 15(1): 46, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218945

ABSTRACT

Entosis is a process that leads to the formation of cell-in-cell structures commonly found in cancers. Here, we identified entosis in hepatocellular carcinoma and the loss of Rnd3 (also known as RhoE) as an efficient inducer of this mechanism. We characterized the different stages and the molecular regulators of entosis induced after Rnd3 silencing. We demonstrated that this process depends on the RhoA/ROCK pathway, but not on E-cadherin. The proteomic profiling of entotic cells allowed us to identify LAMP1 as a protein upregulated by Rnd3 silencing and implicated not only in the degradation final stage of entosis, but also in the full mechanism. Moreover, we found a positive correlation between the presence of entotic cells and the metastatic potential of tumors in human patient samples. Altogether, these data suggest the involvement of entosis in liver tumor progression and highlight a new perspective for entosis analysis in medicine research as a novel therapeutic target.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Entosis , Proteomics , Transcription Factors , rho GTP-Binding Proteins , Lysosomal-Associated Membrane Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL