Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37376119

ABSTRACT

Cell-penetrating peptides (CPPs), such as penetratin, are often investigated as drug delivery vectors and incorporating d-amino acids, rather than the natural l-forms, to enhance proteolytic stability could improve their delivery efficiency. The present study aimed to compare membrane association, cellular uptake, and delivery capacity for all-l and all-d enantiomers of penetratin (PEN) by using different cell models and cargos. The enantiomers displayed widely different distribution patterns in the examined cell models, and in Caco-2 cells, quenchable membrane binding was evident for d-PEN in addition to vesicular intracellular localization for both enantiomers. The uptake of insulin in Caco-2 cells was equally mediated by the two enantiomers, and while l-PEN did not increase the transepithelial permeation of any of the investigated cargo peptides, d-PEN increased the transepithelial delivery of vancomycin five-fold and approximately four-fold for insulin at an extracellular apical pH of 6.5. Overall, while d-PEN was associated with the plasma membrane to a larger extent and was superior in mediating the transepithelial delivery of hydrophilic peptide cargoes compared to l-PEN across Caco-2 epithelium, no enhanced delivery of the hydrophobic cyclosporin was observed, and intracellular insulin uptake was induced to a similar degree by the two enantiomers.

2.
ACS Appl Bio Mater ; 4(4): 3155-3165, 2021 04 19.
Article in English | MEDLINE | ID: mdl-35014403

ABSTRACT

Cell-penetrating peptides (CPPs) are known to interact with cell membranes and by doing so enhance cellular interaction and subsequent cellular internalization of nanoparticles. Yet, the early events of membrane interactions are still not elucidated, which is the aim of the present work. Surface conjugation of polymeric nanoparticles with cationic CPPs of different architecture (short, long linear, and branched) influences the surface properties, especially the charge of the nanoparticles, and therefore provides the possibility of increased electrostatic interactions between nanoparticles with the cell membrane. In this study, the physicochemical properties of CPP-tagged poly(lactic-co-glycolic acid) (PLGA) nanoparticles were characterized, and nanoparticle-cell interactions were investigated in HeLa cells. With the commonly applied methods of flow cytometry as well as confocal laser scanning microscopy, low and similar levels of nanoparticle association were detected for the PLGA and CPP-tagged PLGA nanoparticles with the cell membrane. However, single particle tracking of CPP-tagged PLGA nanoparticles allowed direct observation of the interactions of individual nanoparticles with cells and consequently elucidated the impact that the CPP architecture on the nanoparticle surface can have. Interestingly, the results revealed that nanoparticles with the branched CPP architecture on the surface displayed decreased diffusion modes likely due to increased interactions with the cell membrane when compared to the other nanoparticles investigated. It is anticipated that single particle approaches like the one used here can be widely employed to reveal currently unresolved characteristics of nanoparticle-cell interaction and aid in the design of improved surface-modified nanoparticles for efficient delivery of therapeutics.


Subject(s)
Biocompatible Materials/chemistry , Cell-Penetrating Peptides/chemistry , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , HeLa Cells , Humans , Materials Testing , Particle Size
3.
Biochem J ; 475(10): 1773-1788, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29686042

ABSTRACT

Cell-penetrating peptides (CPPs) comprise efficient peptide-based delivery vectors. Owing to the inherent poor enzymatic stability of peptides, CPPs displaying partial or full replacement of l-amino acids with the corresponding d-amino acids might possess advantages as delivery vectors. Thus, the present study aims to elucidate the membrane- and metabolism-associated effects of l-Penetratin (l-PEN) and its corresponding all-d analog (d-PEN). These effects were investigated when exerted on hepatocellular (HepG2) or intestinal (Caco-2 and IEC-6) cell culture models. The head-to-head comparison of these enantiomeric CPPs included evaluation of their effects on cell viability and morphology, epithelial membrane integrity, and cellular ultrastructure. In all investigated cell models, a rapid decrease in cell viability, pronounced membrane perturbation and an altered ultrastructure were detected upon exposure to d-PEN. At equimolar concentrations, these observations were less pronounced or even absent for cells exposed to l-PEN. Both CPPs remained stable for at least 2 h during exposure to proliferating cells (cultured for 24 h), although d-PEN exhibited a longer half-life when compared with that of l-PEN when exposed to well-differentiated cell monolayers (cultured for 18-20 days). Thus, the stereochemistry of the CPP penetratin significantly influences its effects on cell viability and epithelial integrity when profiled against a panel of mammalian cells.


Subject(s)
Adenocarcinoma/pathology , Carcinoma, Hepatocellular/pathology , Cell Membrane , Cell Survival , Cell-Penetrating Peptides/pharmacology , Colonic Neoplasms/pathology , Liver Neoplasms/pathology , Adenocarcinoma/drug therapy , Carcinoma, Hepatocellular/drug therapy , Colonic Neoplasms/drug therapy , Humans , Liver Neoplasms/drug therapy , Stereoisomerism , Tumor Cells, Cultured
4.
Eur J Pharm Sci ; 118: 144-153, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29524592

ABSTRACT

The absence of a surface-lining mucus layer is a major pitfall for the Caco-2 epithelial model. However, this limitation can be alleviated by applying biosimilar mucus (BM) to the apical surface of the cell monolayer, thereby constructing a mucosa mimicking in vivo conditions. This study aims to elucidate the influence of BM as a barrier towards exogenic compounds such as permeation enhancers, and components of fed state simulated intestinal fluid (FeSSIF). Caco-2 cell monolayers surface-lined with BM were exposed to several compounds with distinct physicochemical properties, and the cell viability and permeability of the cell monolayer was compared to that of cell monolayers without BM and well-established mucus-secreting epithelial models (HT29-MTX-E12 cell monolayers and HT29-MTX-E12/Caco-2 cell co-culture monolayers). Exposure of BM-covered cells to constituents from FeSSIF revealed that it comprised a strong, hydrophilic barrier effect as 90% of BM-covered cells remained viable for >4 h, and the permeation rate of hydrophobic drugs was reduced. In contrast, the permeation rate of hydrophilic drugs was largely unaffected. Control monolayers displayed a loss of barrier function and <10% viable cells. The efficacy of fatty acid permeation enhancers were altered when investigated in BM-covered cells as compared to all the other studied epithelial models. Thus, Caco-2 cell monolayers surface-lined with BM constitute a valuable in vitro model that makes it possible to mimic intestinal fed state conditions when studying drug permeation.


Subject(s)
Intestinal Mucosa/metabolism , Models, Biological , Mucus/metabolism , Caco-2 Cells , Cell Survival/drug effects , Coculture Techniques , Cyclosporine/pharmacology , Deamino Arginine Vasopressin/pharmacology , Fenofibrate/pharmacology , HT29 Cells , Humans , Intestinal Absorption , Mannitol/pharmacology , Metoprolol/pharmacology , Ovalbumin/pharmacology , Permeability
5.
Adv Drug Deliv Rev ; 124: 107-124, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29117511

ABSTRACT

Mucosal administration of drugs and drug delivery systems has gained increasing interest. However, nanoparticles intended to protect and deliver drugs to epithelial surfaces require transport through the surface-lining mucus. Translation from bench to bedside is particularly challenging for mucosal administration since a variety of parameters will influence the specific barrier properties of the mucus including the luminal fluids, the microbiota, the mucus composition and clearance rate, and the condition of the underlying epithelia. Besides, after administration, nanoparticles interact with the mucosal components, forming a biomolecular corona that modulates their behavior and fate after mucosal administration. These interactions are greatly influenced by the nanoparticle properties, and therefore different designs and surface-engineering strategies have been proposed. Overall, it is essential to evaluate these biomolecule-nanoparticle interactions by complementary techniques using complex and relevant mucus barrier matrices.


Subject(s)
Drug Delivery Systems , Mucus/metabolism , Nanoparticles/metabolism , Animals , Humans , Mucus/drug effects , Nanoparticles/chemistry , Surface Properties
6.
Biochim Biophys Acta Biomembr ; 1859(12): 2483-2494, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28919344

ABSTRACT

Cell-penetrating peptides constitute efficient delivery vectors, and studies of their uptake and mechanism of translocation typically involve fluorophore-labeled conjugates. In the present study, the influence of a number of specific fluorophores on the physico-chemical properties and uptake-related characteristics of penetratin were studied. An array of seven fluorophores belonging to distinct structural classes was examined, and the impact of fluorophore labeling on intracellular distribution and cytotoxicity was correlated to the physico-chemical properties of the conjugates. Exposure of several mammalian cell types to fluorophore-penetratin conjugates revealed a strong structure-dependent reduction in viability (1.5- to 20-fold lower IC50 values as compared to those of non-labeled penetratin). Also, the degree of less severe effects on membrane integrity, as well as intracellular distribution patterns differed among the conjugates. Overall, neutral hydrophobic fluorophores or negatively charged fluorophores conferred less cytotoxicity as compared to the effect exerted by positively charged, hydrophobic fluorophores. The latter conjugates, however, exhibited less membrane association and more clearly defined intracellular distribution patterns. Thus, selection of the appropriate flurophore is critical.


Subject(s)
Carrier Proteins/pharmacology , Cell-Penetrating Peptides/pharmacology , Fluorescent Dyes/chemistry , Animals , Caco-2 Cells , Carrier Proteins/chemistry , Cell Line , Cell Survival/drug effects , Cell-Penetrating Peptides/chemistry , Drosophila/chemistry , Fluorescent Antibody Technique/methods , Fluorescent Dyes/classification , HeLa Cells , Hep G2 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Rats , Staining and Labeling/methods , Static Electricity , Structure-Activity Relationship
7.
Int J Mol Sci ; 17(2)2016 Jan 30.
Article in English | MEDLINE | ID: mdl-26840305

ABSTRACT

The hydrophilic nature of peptides and proteins renders them impermeable to cell membranes. Thus, in order to successfully deliver peptide and protein-based therapeutics across the plasma membrane or epithelial and endothelial barriers, a permeation enhancing strategy must be employed. Cell-penetrating peptides (CPPs) constitute a promising tool and have shown applications for peptide and protein delivery into cells as well as across various epithelia and the blood-brain barrier (BBB). CPP-mediated delivery of peptides and proteins may be pursued via covalent conjugation of the CPP to the cargo peptide or protein or via physical complexation obtained by simple bulk-mixing of the CPP with its cargo. Both approaches have their pros and cons, and which is the better choice likely relates to the physicochemical properties of the CPP and its cargo as well as the route of administration, the specific barrier and the target cell. Besides the physical barrier, a metabolic barrier must be taken into consideration when applying peptide-based delivery vectors, such as the CPPs, and stability-enhancing strategies are commonly employed to prolong the CPP half-life. The mechanisms by which CPPs translocate cell membranes are believed to involve both endocytosis and direct translocation, but are still widely investigated and discussed. The fact that multiple factors influence the mechanisms responsible for cellular CPP internalization and the lack of sensitive methods for detection of the CPP, and in some cases the cargo, further complicates the design and conduction of conclusive mechanistic studies.


Subject(s)
Cell-Penetrating Peptides/pharmacokinetics , Drug Delivery Systems/methods , Animals , Cell Membrane Permeability , Cell-Penetrating Peptides/chemistry , Humans
8.
J Control Release ; 197: 111-20, 2015 Jan 10.
Article in English | MEDLINE | ID: mdl-25449810

ABSTRACT

The aim of this study was to gain new insights into protein distribution in solid lipid microparticles (SLMs) and subsequent release mechanisms using a novel label-free chemical imaging method, coherent anti-Stokes Raman scattering (CARS) microscopy. Lysozyme-loaded SLMs were prepared using different lipids with lysozyme incorporated either as an aqueous solution or as a solid powder. Lysozyme distribution in SLMs was investigated using CARS microscopy with supportive structural analysis using electron microscopy. The release of lysozyme from SLMs was investigated in a medium simulating the conditions in the human duodenum. Both preparation method and lipid excipient affected the lysozyme distribution and release from SLMs. Lysozyme resided in a hollow core within the SLMs when incorporated as an aqueous solution. In contrast, lysozyme incorporated as a solid was embedded in clusters in the solid lipid matrix, which required full lipolysis of the entire matrix to release lysozyme completely. Therefore, SLMs with lysozyme incorporated in an aqueous solution released lysozyme much faster than with lysozyme incorporated as a solid. In conclusion, CARS microscopy was an efficient and non-destructive method for elucidating the distribution of lysozyme in SLMs. The interpretation of protein distribution and release during lipolysis enabled elucidation of protein release mechanisms. In future, CARS microscopy analysis could facilitate development of a wide range of protein-lipid matrices with tailor-made controlled release properties.


Subject(s)
Drug Delivery Systems , Lipids/chemistry , Muramidase/chemistry , Chromatography, High Pressure Liquid , Microscopy, Electron, Scanning , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...