Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Infect Dis ; 205(5): 772-81, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22275401

ABSTRACT

BACKGROUND: Vaccine development in human Plasmodium falciparum malaria has been hampered by the exceptionally high levels of CD8(+) T cells required for efficacy. Use of potently immunogenic human adenoviruses as vaccine vectors could overcome this problem, but these are limited by preexisting immunity to human adenoviruses. METHODS: From 2007 to 2010, we undertook a phase I dose and route finding study of a new malaria vaccine, a replication-incompetent chimpanzee adenovirus 63 (ChAd63) encoding the preerythrocytic insert multiple epitope thrombospondin-related adhesion protein (ME-TRAP; n = 54 vaccinees) administered alone (n = 28) or with a modified vaccinia virus Ankara (MVA) ME-TRAP booster immunization 8 weeks later (n = 26). We observed an excellent safety profile. High levels of TRAP antigen-specific CD8(+) and CD4(+) T cells, as detected by interferon γ enzyme-linked immunospot assay and flow cytometry, were induced by intramuscular ChAd63 ME-TRAP immunization at doses of 5 × 10(10) viral particles and above. Subsequent administration of MVA ME-TRAP boosted responses to exceptionally high levels, and responses were maintained for up to 30 months postvaccination. CONCLUSIONS: The ChAd63 chimpanzee adenovirus vector appears safe and highly immunogenic, providing a viable alternative to human adenoviruses as vaccine vectors for human use. CLINICAL TRIALS REGISTRATION: NCT00890019.


Subject(s)
Adenoviruses, Simian/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Protozoan Proteins/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Adenoviruses, Simian/genetics , Animals , Antibodies, Neutralizing/blood , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Epitopes , Flow Cytometry , Humans , Interferon-gamma/metabolism , Interleukin-2/metabolism , Malaria Vaccines/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Vaccines, DNA/adverse effects
2.
Lancet ; 374(9693): 912-20, 2009 Sep 12.
Article in English | MEDLINE | ID: mdl-19729196

ABSTRACT

BACKGROUND: Stem-cell transplantation can cure primary immunodeficiencies. However, in patients with pre-existing organ toxicity, patients younger than 1 year, and those with DNA or telomere repair disorders, chemotherapy-based conditioning is poorly tolerated and results in major morbidity and mortality. We tested a novel antibody-based minimal-intensity conditioning (MIC) regimen to assess whether this approach allowed curative donor stem-cell engraftment without non-haemopoietic toxicity. METHODS: 16 high-risk patients underwent stem-cell transplantation for primary immunodeficiencies with an MIC regimen consisting of two rat anti-CD45 monoclonal antibodies YTH 24.5 and YTH 54.12 for myelosuppression, and alemtuzumab (anti-CD52) and fludarabine, and low dose cyclophosphamide for immunosuppression. Donors were matched siblings (n=5), and matched (9) and mismatched (2) unrelated donors. FINDINGS: Antibody-based conditioning was well tolerated, with only two cases of grade 3 and no grade 4 toxicity. Rates of clinically significant acute (n=6, 36%) and chronic graft-versus-host disease (GVHD) (n=5, 31%) were acceptable. 15 of 16 patients (94%) engrafted, of whom 11 (69%) achieved full or high-level mixed chimerism in both lymphoid and myeloid lineages, and three achieved engraftment in the T-lymphoid lineage only. One patient needed retransplantation. At a median of 40 months post-transplant, 13 of 16 patients (81%) in this high-risk cohort were alive and cured from their underlying disease. INTERPRETATION: Monoclonal antibody-based conditioning seems well tolerated and can achieve curative engraftment even in patients with severe organ toxicity or DNA repair defects, or both. This novel approach represents a shift from the paradigm that intensive chemotherapy or radiotherapy, or both, is needed for donor stem-cell engraftment. This antibody-based conditioning regimen may reduce toxicity and late effects and enable SCT in virtually any primary immunodeficiency patient with a matched donor. FUNDING: None.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Immunologic Deficiency Syndromes/therapy , Immunologic Factors/therapeutic use , Leukocyte Common Antigens/antagonists & inhibitors , Transplantation Conditioning/methods , Alemtuzumab , Animals , Antibodies, Monoclonal, Humanized , Antibodies, Neoplasm/therapeutic use , Child, Preschool , Cyclophosphamide/therapeutic use , Disease-Free Survival , Female , Follow-Up Studies , Graft vs Host Disease/epidemiology , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunosuppressive Agents/therapeutic use , Infant , Kaplan-Meier Estimate , Male , Rats , Transplantation Chimera , Transplantation Conditioning/adverse effects , Transplantation Conditioning/mortality , Treatment Outcome , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...