Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 256(Pt 1): 128397, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38007024

ABSTRACT

Till now, a wide range of chitosan (CHS)-based food packaging films have been developed. Yet, the role of molecular weight (MW), which is an important physical property of CHS, in determining the physicochemical and biochemical properties of vanillic acid (VA)-grafted CHS hydrogel films synthesized using CHS with different MWs has not been investigated until now. Three kinds of CHS including low, medium, and high MWs were grafted separately with VA through a carbodiimide mediated coupling reaction. No significant difference in water resistance properties was observed with increasing MW of CHS, in contrast to obvious decrease in light transmittance and opacity. The VA-g-CHS hydrogel films exhibited significantly improved light blocking capacity. A significant improvement in antioxidant (~6-fold) and antimicrobial (~1.2-fold) activity was observed after grafting with VA. In contrast, the free radical scavenging and antimicrobial activity decreased with increasing MW of CHS. Most importantly, VA-g-CHS hydrogel films could maintain the freshness of cherry tomatoes for up to 10 days at ~25 °C. However, no significant difference was observed depending on the MW value of CHS. This pioneering work is of great importance in guiding the selection of MW of CHS biomacromolecule to design hydrogel films with desired physicochemical and biochemical properties.


Subject(s)
Anti-Infective Agents , Chitosan , Methylgalactosides , Antioxidants/pharmacology , Antioxidants/chemistry , Chitosan/chemistry , Vanillic Acid , Molecular Weight , Food Packaging , Hydrogels , Steam , Solubility , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
2.
Chemosphere ; 313: 137478, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36513203

ABSTRACT

In spite of many works on the biodegradation of textile dyes and phenolic compounds, we propose a new, inexpensive, environmentally friendly, and sustainable material based on electrospun fiber and immobilized laccase. The polycaprolactone (PCL)/polyethyleneimine (PEI) electrospun fibers were optimized and prepared by electrospinning technique according to the operational parameters like PCL concentration (12 wt%), PEI concentration (10 wt%), voltage (16 kV), needle tip-collector distance (20 cm), and injection speed (0.7 mL/h). Next, characterization studies were performed to investigate the morphology and structure of the electrospun fibers without and with laccase. The crude laccase was obtained by cultivating the white rot fungus T. trogii (TT), and T. versicolor (TV). The resulting electrospun fibers showed a smooth surface with a mean diameter of around 560 nm, and larger diameters were observed after laccase immobilization. According to the results, immobilization increased the stability properties of laccase such as storage, and operational. For instance, the residual activity of the PCL/PEI/TTL and PCL/PEI/TVL after 10 repeated cycles, was 33.2 ± 0.2% and 26.0 ± 0.9%, respectively. After 3 weeks of storage, they retained around 30% of their original activity. Moreover, the PCL/PEI/TTL and PCL/PEI/TVL were found to possess high decolorization yield to remove Orange II and Malachite Green textile dyes from solutions imitating polluted waters. Among them, the PCL/PEI/TTL exhibited the highest decolorization efficiencies of Orange II and Malachite Green after 8 continuous uses at pH 5 and a temperature of 50 °C, reaching over 86%, and 46%, respectively. Moreover, PCL/PEI/TTL and PCL/PEI/TVL effectively degraded the 2,6-dichlorophenol phenolic compound at an optimal pH and temperature range and exhibited maximum removal efficiency of 52.6 ± 0.1% and 64.5 ± 7.6%, respectively. Our approach combines the advantageous properties of electrospun fiber material and immobilization strategy for the efficient use of industrial scale important enzymes such as laccase in various enzymatic applications.


Subject(s)
Coloring Agents , Laccase , Coloring Agents/chemistry , Laccase/chemistry , Polyethyleneimine , Textiles , Enzymes, Immobilized/chemistry
3.
Int J Biol Macromol ; 222(Pt B): 2670-2682, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36220402

ABSTRACT

Herein, we report a multifunctional hydrogel membrane with good mechanical properties, excellent antioxidant efficiency, and broad-spectrum antimicrobial activity. For this purpose, a series of chitosan-carboxymethyl cellulose-Pluronic P123 (CHT-CMC-P123) hydrogel membranes were prepared by blending various tetracycline hydrochloride (TCH) contents. The physicochemical and biological properties of CHT-CMC-P123 membranes were comprehensively investigated. With the increase of TCH content from 5 % to 20 %, hydrogel membranes presented a decreased water contact angle from 18.96° to 11.24°, and a decreased water vapor transmission rate from 171.8 to 156.1 g/m2 h. Besides, with the increase of TCH content (5-20 %), the tensile strength (0.31-0.11 MPa) and elongation at break (10.57-4.82 %) of hydrogel membranes decreased while their thickness increased (113.5-324.3 µm). The data show that the release of TCH reached equilibrium after 26 days, with a cumulative percentage of approximately 28 %-87 %. Moreover, the hydrogel membranes exhibited a high antioxidant capacity of ~92 % for DPPH radical. Importantly, the incorporation of TCH significantly (~2.3 fold) enhanced the antimicrobial activity of the hydrogel membranes against Gram-positive, and Gram-negative bacteria and yeast. Based on our findings, these hydrogel membranes with superior properties may serve as effective food packaging and wound healing materials.


Subject(s)
Anti-Infective Agents , Chitosan , Tetracycline/pharmacology , Tetracycline/chemistry , Chitosan/chemistry , Carboxymethylcellulose Sodium/chemistry , Hydrogels/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
4.
Chemosphere ; 292: 133382, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34954196

ABSTRACT

This study aims to present a simple and effective carrier matrix to immobilize laccase as opposed to complex and tedious immobilization processes and also to use it in the removal of textile dyes. For this purpose, Cobalt (Co) and Copper (Cu) based metal-organic frameworks (MOFs) were prepared and laccase was immobilized on two different MOFs via encapsulation. The characterization outcomes showed that laccase was well immobilized into MOF supports. Optimum pH and temperature were found for Lac/Co-MOF (pH 4.5 at 50 °C) and Lac/Cu-MOF (pH 5.0 at 50 °C). The Km (0.03 mM) and Vmax (97.4 µmol/min) values of Lac/Cu-MOF were lower than those of Lac/Co-MOF (Km = 0.13 mM, Vmax = 230.7 µmol/min). The immobilized laccases showed good reusability as well as improved resistance to temperature denaturation and high storage stability. For instance, the Lac/Co-MOF and Lac/Cu-MOF retained more than 58% activity after 4 weeks of storage at room temperature. Meanwhile, Lac/Co-MOF and Lac/Cu-MOF maintained 56.5% and 55.8% of their initial activity, respectively, after 12 reuse cycles. Moreover, thermal deactivation kinetic studies of immobilized laccases displayed lower k value, higher t1/2, and enhancement of thermodynamic parameters, which means better thermostability. Finally, the decolorization activities for the Lac/Co-MOF were 78% and 61% at the 5th cycle for Reactive Blue 171 and Reactive Blue 198, respectively. In conclusion, it can be inferred that the MOFs are more sustainable and beneficial support for laccase immobilization and they can be efficient for removing textile dyes from industrial wastes.


Subject(s)
Laccase , Metal-Organic Frameworks , Coloring Agents , Enzymes, Immobilized/metabolism , Kinetics , Laccase/metabolism , Textiles
5.
Int J Biol Macromol ; 188: 696-707, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34400232

ABSTRACT

Herein, tannic acid (TA)-reinforced chitosan (CHS)/ß-cyclodextrin (ß-CD) biocomposite membranes were prepared by TA solution incubating treatment. The functional groups, crystal structure, and morphological characterizations of the prepared biocomposite membranes were investigated using various methods. The biocomposite membranes were investigated in terms of their wettability, porosity, swelling degree, and water uptake. In vitro antioxidant investigation was carried out through DPPH assay. Moreover, the prepared biocomposite membranes were evaluated for their antimicrobial ability against three different microbial species. The introduction of TA effectively improved the swelling behavior, mechanical strength, and porosity of the biocomposite membranes. TA increased the tensile strength from 0.7 ± 0.2 MPa to a maximum of 2.2 ± 0.6 MPa and elongation at break from 26.9 ± 0.7% to a maximum of 36.7 ± 3.5%. The biocomposite membranes showed an initial burst release of TA (~40%) within 6 h, followed by a gradual release of 100% by 18 h. Furthermore, the introduction of TA into the biocomposite membranes further improved the antimicrobial activities against both bacteria and yeast, as well as the in vitro antioxidant potential. As a consequence, the prepared biocomposite membranes could potentially be used as scaffold in broaden biomedical fields due to their adaptable structure, porosity, greatly antioxidant, and antimicrobial activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Biocompatible Materials/chemistry , Chitosan/chemistry , Mechanical Phenomena , Membranes, Artificial , Tannins/chemistry , beta-Cyclodextrins/chemistry , Bacteria/drug effects , Kinetics , Microbial Sensitivity Tests , Porosity , Spectroscopy, Fourier Transform Infrared , Water , X-Ray Diffraction , Yeasts/drug effects
6.
Int J Biol Macromol ; 163: 529-540, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32640322

ABSTRACT

The present study explores the preparation and characterization of chitosan/poly (propylene glycol)/titanium dioxide (CH/PPG/TiO2) composite hydrogels in view of their developing applications such as antimicrobial packaging, wound dressing and antibacterial materials. The prepared CH/PPG/TiO2 films were comprehensively characterized by several methods. The size distribution showed the average size of the TiO2 nanoparticles (NPs) was about 40 nm. Additionally, other properties including swelling ratio, water retention, water contact angle, porosity, water uptake, in vitro enzymatic degradation, water vapor transmission rate, in vitro biomineralization studies, and mechanical tests were evaluated in detailed. Besides these characterizations, the antimicrobial activity of CH/PPG/TiO2 composite film against Staphylococcus aureus, Escherichia coli, and Candida lipolytica was evaluated by using disc diffusion method. Based on the obtained results, the CH/PPG/TiO2 composite hydrogels showed enhanced water vapor permeability, porosity, water retention, and swelling ratio. An improvement was observed in the examined mechanical and thermal properties with the addition of TiO2 NPs. The tensile strength and elongation at break values of CH/PPG/TiO2 were 3.0 MPa and 31%, respectively. Most importantly, the CH/PPG/TiO2 composite hydrogels showed strong antimicrobial properties. Finally, the developed composite scaffold prepared in this study may possess potentially useful in biomedical applications.


Subject(s)
Chitosan/chemistry , Hydrogels/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Propylene Glycols/chemistry , Titanium/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biomedical Research , Biomedical Technology , Humans , Hydrodynamics , Membranes, Artificial , Nanoparticles/ultrastructure , Porosity , Spectroscopy, Fourier Transform Infrared
7.
Article in English | MEDLINE | ID: mdl-32416322

ABSTRACT

In this study, it was hypothesis that A. mongoliensis could be used as bioindicator for Ni (II) and Co (II). Thus, Ni (II) and Co (II) resistance, removal, bioaccumulation, and the impacts of them on antioxidant enzyme systems of thermophilic Anoxybacillus mongoliensis were investigated in details. The bioaccumulation of Ni (II) and Co (II) on the cell membrane of thermophilic A. mongoliensis, variations on surface macrostructure and functionality by FT-IR and SEM, and determination of antioxidant enzyme activities were also tested. The highest bioaccumulation values of Co (II) and Ni (II) were detected as 102.0 mg metal/g of dry bacteria at 10 mg/L for the 12th h and 90.4 mg metal/g of dry bacteria for the 24th h, respectively, and the highest Ni (II) and Co (II) cell membrane bioaccumulation capacities of A. mongoliensis were determined as 268.5 and 274.9 mg metal/g wet membrane, respectively at the 24th h. In addition, increasing on SOD and CAT activities were observed on depend of concentration of Ni (II) and Co (II) with respect to control. The antioxidant enzyme activity results also indicated that A. mongoliensis might be used as a bioindicator for Ni (II) and Co (II) pollution in environmental water specimens.


Subject(s)
Anoxybacillus/growth & development , Antioxidants/metabolism , Catalase/metabolism , Copper/metabolism , Environmental Pollutants/metabolism , Nickel/metabolism , Superoxide Dismutase/metabolism , Anoxybacillus/drug effects , Anoxybacillus/enzymology , Anoxybacillus/metabolism , Bioaccumulation , Copper/isolation & purification , Copper/toxicity , Environmental Pollutants/isolation & purification , Environmental Pollutants/toxicity , Nickel/isolation & purification , Nickel/toxicity
8.
Int J Biol Macromol ; 150: 871-884, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32027899

ABSTRACT

In this study, a novel immobilization support for laccase was developed to enhance enzyme stability, efficiency and reusability. Firstly, Fe3O4 magnetic particles were synthesized and modified by the co-precipitation route using thiolated chitosan (TCS). The support was characterized using several methods. Afterward, laccase was attached to the surface of functional support. The biochemical properties of the immobilized laccase were comprehensively investigated. It was observed that immobilized laccase achieved maximum activity at pH 4.0 and the optimum temperature was found to be 50 °C. After storage at +4 °C and ~25 °C for 4 weeks, the residual activity of the immobilized laccase was 87% and 80% of its initial activity, respectively. At 55 °C, the activity of immobilized laccase decreased to 73.4% in 180 min and after reused 20 times, the relative activity of immobilized laccase still was approximately 50% of its initial activity. Moreover, the textile dye (Reactive Blue 171 and Acid Blue 74) decolorization activity of immobilized laccase was also tested and it showed long-term textile dye decolorization activity. These results are promising for the use of laccase in industrial and biotechnological applications. Therefore, this functionalized magnetic hybrid composite might be used to immobilize laccase, an industrially important enzyme.


Subject(s)
Biocatalysis , Chitosan/chemistry , Coloring Agents/chemistry , Ferric Compounds/chemistry , Laccase/chemistry , Composite Resins/chemistry , Enzyme Activation , Enzyme Stability , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Kinetics , Magnetics , Nanoparticles , Temperature , Textiles , Wastewater , Water Decolorization , Water Pollutants, Chemical/metabolism
9.
Turk J Biol ; 43(1): 37-46, 2019.
Article in English | MEDLINE | ID: mdl-30930634

ABSTRACT

The effects of incubation time, temperature, initial pH, and dye concentration on the indigo carmine decolorization activity of Pseudomonas aeruginosa ATCC 10145 and some factors on the decolorization potential of crude laccase enzyme obtained from Funalia trogii ATCC 200800 were comparatively investigated. This bacterium showed effective decolorization activity at all agitation and temperature values. Indigo carmine was greatly decolorized by P. aeruginosa at all pH values except pH 10. A decrease in decolorization activity occurred with increasing dye concentration, but this bacterium effectively decolorized the dye within 24 h. The decolorization process was through microbial metabolism, not biosorption. No decolorization or laccase activity could be obtained by the cell-free intracellular extract or culture filtrate of this bacterium. On the other hand, crude laccase effectively decolorized indigo carmine under highly acidic conditions, especially at pH 3.0 as 57% in 300 seconds. This activity decreased progressively due to the increase in pH values. In a short incubation period and at high temperature values, the crude laccase enzyme removed the color of the dye at 50 °C (56%), 60 °C (45%), and 70 °C (38%). These data are important for improving methods for decolorization of textile dyes used at high temperatures in various industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL