Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(18): 183201, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37204888

ABSTRACT

Laser-driven recollision physics is typically accessible only at field intensities high enough for tunnel ionization. Using an extreme ultraviolet pulse for ionization and a near-infrared (NIR) pulse for driving of the electron wave packet lifts this limitation. This allows us to study recollisions for a broad range of NIR intensities with transient absorption spectroscopy, making use of the reconstruction of the time-dependent dipole moment. Comparing recollision dynamics with linear vs circular NIR polarization, we find a parameter space, where the latter favors recollisions, providing evidence for the so far only theoretically predicted recolliding periodic orbits.

2.
J Phys Chem A ; 125(47): 10138-10143, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34788037

ABSTRACT

We performed a time-resolved spectroscopy experiment on the dissociation of oxygen molecules after the interaction with intense extreme-ultraviolet (XUV) light from the free-electron laser in Hamburg at Deutsches Elektronen-Synchrotron. Using an XUV-pump/XUV-probe transient-absorption geometry with a split-and-delay unit, we observe the onset of electronic transitions in the O2+ cation near 50 eV photon energy, marking the end of the progression from a molecule to two isolated atoms. We observe two different time scales of 290 ± 53 and 180 ± 76 fs for the emergence of different ionic transitions, indicating different dissociation pathways taken by the departing oxygen atoms. With regard to the emerging opportunities of tuning the central frequencies of pump and probe pulses and of increasing the probe-pulse bandwidth, future pump-probe transient-absorption experiments are expected to provide a detailed view of the coupled nuclear and electronic dynamics during molecular dissociation.

3.
Faraday Discuss ; 228(0): 519-536, 2021 May 27.
Article in English | MEDLINE | ID: mdl-33575691

ABSTRACT

The emergence of ultra-intense extreme-ultraviolet (XUV) and X-ray free-electron lasers (FELs) has opened the door for the experimental realization of non-linear XUV and X-ray spectroscopy techniques. Here we demonstrate an experimental setup for an all-XUV transient absorption spectroscopy method for gas-phase targets at the FEL. The setup combines a high spectral resolving power of E/ΔE ≈ 1500 with sub-femtosecond interferometric resolution, and covers a broad XUV photon-energy range between approximately 20 and 110 eV. We demonstrate the feasibility of this setup firstly on a neon target. Here, we intensity- and time-resolve key aspects of non-linear XUV-FEL light-matter interactions, namely the non-resonant ionization dynamics and resonant coupling dynamics of bound states, including XUV-induced Stark shifts of energy levels. Secondly, we show that this setup is capable of tracking the XUV-initiated dissociation dynamics of small molecular targets (oxygen and diiodomethane) with site-specific resolution, by measuring the XUV transient absorption spectrum. In general, benefitting from a single-shot detection capability, we show that the setup and method provides single-shot phase-locked XUV pulse pairs. This lays the foundation to perform, in the future, experiments as a function of the XUV interferometric time delay and the relative phase, which enables advanced coherent non-linear spectroscopy schemes in the XUV and X-ray spectral range.

4.
Nat Commun ; 12(1): 643, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33510142

ABSTRACT

High-intensity ultrashort pulses at extreme ultraviolet (XUV) and x-ray photon energies, delivered by state-of-the-art free-electron lasers (FELs), are revolutionizing the field of ultrafast spectroscopy. For crossing the next frontiers of research, precise, reliable and practical photonic tools for the spectro-temporal characterization of the pulses are becoming steadily more important. Here, we experimentally demonstrate a technique for the direct measurement of the frequency chirp of extreme-ultraviolet free-electron laser pulses based on fundamental nonlinear optics. It is implemented in XUV-only pump-probe transient-absorption geometry and provides in-situ information on the time-energy structure of FEL pulses. Using a rate-equation model for the time-dependent absorbance changes of an ionized neon target, we show how the frequency chirp can be directly extracted and quantified from measured data. Since the method does not rely on an additional external field, we expect a widespread implementation at FELs benefiting multiple science fields by in-situ on-target measurement and optimization of FEL-pulse properties.

5.
Phys Rev Lett ; 123(16): 163201, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31702368

ABSTRACT

We report on the experimental observation of a strong-field dressing of an autoionizing two-electron state in helium with intense extreme-ultraviolet laser pulses from a free-electron laser. The asymmetric Fano line shape of this transition is spectrally resolved, and we observe modifications of the resonance asymmetry structure for increasing free-electron-laser pulse energy on the order of few tens of Microjoules. A quantum-mechanical calculation of the time-dependent dipole response of this autoionizing state, driven by classical extreme-ultraviolet (XUV) electric fields, evidences strong-field-induced energy and phase shifts of the doubly excited state, which are extracted from the Fano line-shape asymmetry. The experimental results obtained at the Free-Electron Laser in Hamburg (FLASH) thus correspond to transient energy shifts on the order of a few meV, induced by strong XUV fields. These results open up a new way of performing nonperturbative XUV nonlinear optics for the light-matter interaction of resonant electronic transitions in atoms at short wavelengths.

6.
Phys Rev Lett ; 123(10): 103001, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31573300

ABSTRACT

We demonstrate time-resolved nonlinear extreme-ultraviolet absorption spectroscopy on multiply charged ions, here applied to the doubly charged neon ion, driven by a phase-locked sequence of two intense free-electron laser pulses. Absorption signatures of resonance lines due to 2p-3d bound-bound transitions between the spin-orbit multiplets ^{3}P_{0,1,2} and ^{3}D_{1,2,3} of the transiently produced doubly charged Ne^{2+} ion are revealed, with time-dependent spectral changes over a time-delay range of (2.4±0.3) fs. Furthermore, we observe 10-meV-scale spectral shifts of these resonances owing to the ac Stark effect. We use a time-dependent quantum model to explain the observations by an enhanced coupling of the ionic quantum states with the partially coherent free-electron laser radiation when the phase-locked pump and probe pulses precisely overlap in time.

7.
Opt Lett ; 44(19): 4749-4752, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31568433

ABSTRACT

Accessing attosecond (as) dynamics directly in the time domain has been achieved by several pioneering experiments over the course of the last decade. Extreme ultraviolet (XUV) group delays and, later, ionization time delays on the order of a few attoseconds have been extracted by photoemission or high-harmonic spectroscopy. Here, we present and benchmark an approach based on attosecond transient absorption spectroscopy to quantify deliberately induced delays by employing resonant photoexcitation of three XUV transitions with a precision of less than 5 as. While here we quantify the sensitivity to these delays via a chirp on the attosecond pulse by using thin-foil metallic filters, the method enables future studies of attosecond delays probed through resonant excitations.

8.
Rev Sci Instrum ; 90(5): 053108, 2019 May.
Article in English | MEDLINE | ID: mdl-31153289

ABSTRACT

Measuring bound-state quantum dynamics, excited and driven by strong fields, is achievable by time-resolved absorption spectroscopy. Here, a vacuum beamline for spectroscopy in the attosecond temporal and extreme ultraviolet (XUV) spectral range is presented, which is a tool for observing and controlling nonequilibrium electron dynamics. In particular, we introduce a technique to record an XUV absorption signal and the corresponding reference simultaneously, which greatly improves the signal quality. The apparatus is based on a common beam path design for XUV and near-infrared (NIR) laser light in a vacuum. This ensures minimal spatiotemporal fluctuations between the strong NIR laser and the XUV excitation and reference beams, while the grazing incidence optics enable broadband spectral coverage. The apparatus combines high spectral and temporal resolution together with an increase in sensitivity to weak absorption signatures by an order of magnitude. This opens up new possibilities for studying strong-field-driven electron dynamics in bound systems on their natural attosecond time scale.

9.
Opt Lett ; 41(4): 709-12, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26872169

ABSTRACT

Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...