Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787450

ABSTRACT

The sol-gel reaction mechanism of 211 MAX phases has proven to be very complex when identifying the intermediate species, chemical processes, and conversions that occur from a mixture of metal salts and gelling agent into a crystalline ternary carbide. With mostly qualitative results in the literature (Cr2GaC, Cr2GeC, and V2GeC), additional analytical techniques, including thermal analysis, powder diffraction, total scattering, and various spectroscopic methods, are necessary to unravel the identity of the chemical compounds and transformations during the reaction. Here, we demonstrate the combination of these techniques to understand the details of the sol-gel synthesis of MAX phase V2PC. The metal phosphate complexes, as well as amorphous/nanocrystalline vanadium phosphate species (V in different oxidation states), are identified at all stages of the reaction and a full schematic of the reaction process is suggested. The early amorphous vanadium species undergo multiple changes of oxidation states while organic species decompose releasing a variety of small molecule gases. Amorphous oxides, analogous to [NH4][VO2][HPO4], V2PO4O, and VO2P2O7 are identified in the dried gel obtained during the early stages of the heating process (300 and 600 °C), respectively. They are carbothermally reduced starting at 900 °C and subsequently react to crystalline V2PC with the excess carbon in the reaction mixture. Through CHN analysis, we obtain an estimate of left-over amorphous carbon in the product which will guide future efforts of minimizing the amount of carbon in sol gel-produced MAX phases which is important for subsequent property studies.

2.
Inorg Chem ; 63(17): 7725-7734, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38623051

ABSTRACT

Layered carbides are fascinating compounds due to their enormous structural and chemical diversity, as well as their potential to possess useful and tunable functional properties. Their preparation, however, is challenging and forces synthesis scientists to develop creative and innovative strategies to access high-quality materials. One unique compound among carbides is Mo2Ga2C. Its structure is related to the large and steadily growing family of 211 MAX phases that crystallize in a hexagonal structure (space group P63/mmc) with alternating layers of edge-sharing M6X octahedra and layers of the A-element. Mo2Ga2C also crystallizes in the same space group, with the difference that the A-element layer is occupied by two A-elements, here Ga, that sit right on top of each other (hence named "221" compound). Here, we propose that the Ga content in this compound is variable between 2:2, 2:1, and 2: ≤1 (and 2:0) Mo/Ga ratios. We demonstrate that one Ga layer can be selectively removed from Mo2Ga2C without jeopardizing the hexagonal P63/mmc structure. This is realized by chemical treatment of the 221 phase Mo2Ga2C with a Lewis acid, leading to the "conventional" 211 MAX phase Mo2GaC. Upon further reaction with CuCl2, more Ga is removed and replaced with Cu (instead of fully exfoliating into the Ga-free Mo2CTx MXene), leading to Mo2Ga1-xCuxC still crystallizing with space group P63/mmc, however, with a significantly larger c-lattice parameter. Furthermore, 211 Mo2GaC can be reacted with Ga to recover the initial 221 Mo2Ga2C. All three reaction pathways have not been reported previously and are supported by powder X-ray diffraction (PXRD), electron microscopy, X-ray spectroscopy, and density functional theory (DFT) calculations.

3.
Chempluschem ; 88(8): e202300214, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37500596

ABSTRACT

MAX phases are layered solids with unique properties combining characteristics of ceramics and metals. MXenes are their two-dimensional siblings that can be synthesized as van der Waals-stacked and multi-/single-layer nanosheets, which possess chemical and physical properties that make them interesting for a plethora of applications. Both families of materials are highly versatile in terms of their chemical composition and theoretical studies suggest that many more members are stable and can be synthesized. This is very intriguing because new combinations of elements, and potentially new structures, can lead to further (tunable) properties. In this review, we focus on the synthesis science (including non-conventional approaches) and structure of members less investigated, namely compounds with more exotic M-, A-, and X-elements, for example nitrides and (carbo)nitrides, and the related family of MAB phases.

4.
ACS Nano ; 17(13): 12693-12705, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37368981

ABSTRACT

MAX phases with the general formula Mn+1AXn are layered carbides, nitrides, and carbonitrides with varying stacking sequence of layers of M6X octahedra and the A element depending on n. While "211" MAXphases (n = 1) are very common, MAX phases with higher n, especially n ≥ 3, have hardly been prepared. This work addresses open questions regarding the synthesis conditions, structure, and chemical composition of the "514" MAX phase. In contrast to literature reports, no oxide is needed to form the MAX phase, yet multiple heating steps at 1,600 °C are required. Using high-resolution X-ray diffraction, the structure of (Mo1-xVx)5AlC4 is thoroughly investigated, and Rietveld refinement suggests P-6c2 as the most fitting space group. SEM/EDS and XPS show that the chemical composition of the MAX phase is (Mo0.75V0.25)5AlC4. It was also exfoliated into its MXene sibling (Mo0.75V0.25)5C4 using two different techniques (using HF and an HF/HCl mixture) that lead to different surface terminations as shown by XPS/HAXPES measurements. Initial investigations of the electrocatalytic properties of both MXene versions show that, depending on the etchant, (Mo0.75V0.25)5C4 can reduce hydrogen at 10 mA cm-2 with an overpotential of 166 mV (HF only) or 425 mV (HF/HCl) after cycling the samples, which makes them a potential candidate as an HER catalyst.

5.
Inorg Chem ; 61(43): 16976-16980, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36265012

ABSTRACT

More than 150 MAX phases are known to date. Their chemical diversity is the result of mixing-and-matching early-to-mid transition metals (M), main group elements (A), and carbon and/or nitrogen (X). The vast majority of the respective carbides and (carbo)nitrides contain group 13 and 14 as the A element, such as Al, Ga, and Si. V2PC is among the least studied members of this family of materials; as a matter of fact, it is only mentioned in two pieces of original literature. The solid-state synthesis is extremely vaguely described and working with elemental phosphorus poses additional synthetic challenges. Here, we confirm these experimental difficulties and present an alternative sol gel-based approach to prepare almost single-phase V2PC. The versatility of the sol gel chemistry is further demonstrated by variation of the gel-building agent moving beyond citric acid as the carbon source. DFT calculations support the experimentally obtained structural parameters and show V2PC is a metal.

6.
Inorg Chem ; 61(28): 10634-10641, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35775787

ABSTRACT

The research in MAX phases is mainly concentrated on the investigation of carbides rather than nitrides (currently >150 carbides and only <15 nitrides) that are predominantly synthesized by conventional solid-state techniques. This is not surprising since the preparation of nitrides and carbonitrides is more demanding due to the high stability and low diffusion rate of nitrogen-containing compounds. This leads to several drawbacks concerning potential variations in the chemical composition of the MAX phases as well as control of morphology, the two aspects that directly affect the resulting materials properties. Here, we report how alternative solid-state hybrid techniques solve these limitations by combining conventional techniques with nonconventional precursor synthesis methods, such as the "urea-glass" sol-gel or liquid ammonia method. We demonstrate the synthesis and morphology control within the V-Ga-C-N system by preparing the MAX phase carbide and nitride─the latter in the form of bulkier and more defined smaller particle structures─as well as a hitherto unknown carbonitride V2GaC1-xNx MAX phase. This shows the versatility of hybrid methods starting, for example, from wet chemically obtained precursors that already contain all of the ingredients needed for carbonitride formation. All products are characterized in detail by X-ray powder diffraction, electron microscopy, and electron and X-ray photoelectron spectroscopies to confirm their structure and morphology and to detect subtle differences between the different chemical compositions.

7.
Inorg Chem ; 61(3): 1603-1610, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35020374

ABSTRACT

Despite their intriguing properties, MAX phases to date remain a class of materials overwhelmingly synthesized and studied with conventional approaches that date back to their discovery. With an ever-increasing demand for new and better materials and areas of application, developing new synthesis techniques must be at the forefront of our scientific efforts and cannot be overlooked. Sol-gel chemistry, while being a very traditional approach (especially for oxides), has so far hardly been leveraged within the MAX phase community. As a newly emerging technique to access nonoxide compounds, such as MAX phases, it offers a variety of advantages over classical solid-state chemistry, namely, milder reaction conditions and greater processibility (as previously shown for Cr2GaC). Here, the sol-gel synthesis of the two MAX phase members V2GeC and Cr2GeC, in combination with both conventional and nonconventional (microwave) heating techniques, is presented. In all instances, high yields were achieved, with only minor impurities remaining in the product. This expansion of the method to other members (apart from Cr2GaC) is a critical milestone in proving the technique's viability. Additionally, using simultaneous calorimetry and mass spectrometry, first insights into the underlying carbothermal reduction reaction are presented. Understanding the chemistry and formation mechanism will help broaden the sol-gel-based synthesis technique and increase its applicability.

8.
ACS Org Inorg Au ; 2(1): 59-65, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-36855400

ABSTRACT

The class of MAX phases represents intriguing materials, as they combine ceramic and metallic properties quite exotically. Although many potential areas of application have been identified, a commercialization is still to be realized. This is particularly odd considering their existence of more than 60 years, however, less so considering the common synthesis techniques used. In fact, MAX phases are typically studied in either bulk or thin films, considerably hindering their integration into highly functional applications. Here, a facile and versatile sol-gel-based approach for the biopolymer-templated synthesis of MAX phase Cr2GaC is introduced, capable of preparing the layered ternary carbide in a variety of technological useful shapes. We demonstrate for the first time how our wet chemical synthesis strategy immensely increases the accessibility of specific shapes and morphologies via the targeted synthesis of thick films, microspheres, and hollow microspheres.

9.
Nanoscale ; 14(3): 744-751, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34940774

ABSTRACT

While MAX phases offer an exotic combination of ceramic and metallic properties, rendering them a unique class of materials, their applications remain virtually hypothetical. To overcome this shortcoming, a sol-gel based route is introduced that allows access to microwires in the range of tens of micrometers. Thorough structural characterization through XRD, SEM, EDS, and AFM demonstrates a successful synthesis of carbonaceous Cr2GaC wires, and advanced low temperature electronic transport measurements revealed resistivity behavior dominated by amorphous carbon. The tunability of electronic behavior of the obtained microwires is shown by a halide post-synthesis treatment, allowing purposeful engineering of the microwires' electrical conductivity. Raman studies revealed the polyanionic nature of the intercalated halides and a slow decrease in halide concentration was concluded from time-dependent conductivity measurements. Based on these findings, the process is considered a viable candidate for fabricating chemiresistive halogen gas sensors.

10.
Dalton Trans ; 49(35): 12215-12221, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32657303

ABSTRACT

Two-dimensional carbides/nitrides, typically called MXenes, are an emerging member of the ever-growing family of two-dimensional materials. The prediction of a ferromagnetic groundstate in chromium-containing MXenes has triggered growing interest in their chemical exfoliation from Cr-based MAX phases. However, the exfoliation poses serious difficulties using standard etching agents such as hydrofluoric acid (HF). Here, we investigate the exfoliability of Cr2GaC particles by chemical etching with aqueous HF both experimentally and theoretically. Structural and microstructural analyses show that the Cr2GaC particles decompose into chromium carbide and oxide without the formation of a Cr-based MXene. A thermodynamic analysis based on ab initio electronic structure calculations reveals that the exfoliation of Cr-based MXene from Cr2GaC by HF-etching is inhibited by more favorable competing reactions. This result confirms the experimental finding and suggests that HF is an unsuitable etching agent for a successful exfoliation of Cr2GaC.

11.
Sci Rep ; 8(1): 602, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330407

ABSTRACT

Recently developed laser-based measurement techniques are used to image the temperatures and velocities in gas flows. They require new phosphor materials with an unprecedented combination of properties. A novel synthesis procedure is described here; it results in hierarchically structured, hollow microspheres of Eu3+-doped Y2O3, with unusual particle sizes and very good characteristics compared to full particles. Solution-based precipitation on polymer microballoons produces very stable and luminescent, ceramic materials of extremely low density. As a result of the - compared to established template-directed syntheses - reduced mass of polymer that is lost upon calcination, micron-sized particles are obtained with mesoporous walls, low defect concentrations, and nanoscale wall thicknesses. They can be produced with larger diameters (~25 µm) compared to known hollow spheres and exhibit an optimized flow behavior. Their temperature sensing properties and excellent fluidic follow-up behavior are shown by determining emission intensity ratios in a specially designed heating chamber. Emission spectroscopy and imaging, electron microscopy and X-ray diffraction results are presented for aerosolizable Y2O3 with an optimized dopant concentration (8%). Challenges in the field of thermofluids can be addressed by combined application of thermometry and particle image velocimetry with such hollow microparticles.

12.
Adv Mater ; 26(17): 2755-61, 2618, 2014 May.
Article in English | MEDLINE | ID: mdl-24474071

ABSTRACT

An approach based on a solution-based synthesis that produces a thermally stable Ag/oxide/S2 Te3 -Te metal-semiconductor heterostructure is described. With this approach, a figure of merit of zT = 1.0 at 460 K is achieved, a record for a heterostructured material made using wet chemistry. Combining experiments and theory shows that the large increase in the material's Seebeck coefficient results from hot carrier filtering.

13.
Dalton Trans ; 43(2): 558-62, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24127062

ABSTRACT

Nanoparticular FeSb2 was prepared in solution from cyclopentadienyl iron(ii) dicarbonyl dimer [Fe(Cp(CO)2)]2 and antimony nanoparticles. Spark plasma sintering was used as consolidation method to maintain the particle size. The thermoelectric performance of FeSb2 is limited by its high thermal conductivity. In this work, the thermal conductivity was suppressed by nearly 80% compared to the bulk value by introducing grain boundary scattering of phonons on the nanoscale. The thermoelectric properties of the consolidated FeSb2 emphasize the possibility of altering thermal transport of promising thermoelectric compounds by phonon scattering by engineering the interfaces at the nanoscale.

14.
Phys Chem Chem Phys ; 15(37): 15399-403, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23936907

ABSTRACT

Engineering of nanoscale structures is a requisite for controlling the electrical and thermal transport in solids, in particular for thermoelectric applications that require a conflicting combination of low thermal conductivity and low electrical resistivity. We report the thermoelectric properties of spark plasma sintered Magnéli phases WO2.90 and WO2.722. The crystallographic shear planes, which are a typical feature of the crystal structures of Magnéli-type metal oxides, lead to a remarkably low thermal conductivity for WO2.90. The figures of merit (ZT = 0.13 at 1100 K for WO2.90 and 0.07 at 1100 K for WO2.722) are relatively high for tungsten-oxygen compounds and metal oxides in general. The electrical resistivity of WO2.722 shows a metallic behaviour with temperature, while WO2.90 has the characteristics of a heavily doped semiconductor. The low thermopower of 80 µV K(-1) at 1100 K for WO2.90 is attributed to its high charge carrier concentration. The enhanced thermoelectric performance for WO2.90 compared to WO2.722 originates from its much lower thermal conductivity, due to the presence of crystallographic shear and dislocations in the crystal structure. Our study is a proof of principle for the development of efficient and low-cost thermoelectric materials based on the use of intrinsically nanostructured materials rather than artificially structured layered systems to reduce lattice thermal conductivity.

15.
Phys Chem Chem Phys ; 15(18): 6990-7, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23552642

ABSTRACT

Half-Heusler thermoelectrics offer the possibility to choose from a variety of non-toxic and earth-abundant elements. TiNiSn is of particular interest and - with its relatively high electrical conductivity and Seebeck coefficient - allows for optimization of its thermoelectric figure of merit, reaching values of up to 1 in heavily-doped and/or phase-segregated systems. In this contribution, we used an energy- and time-efficient process involving solid-state preparation in a commercial microwave oven and a fast consolidation technique, Spark Plasma Sintering, to prepare a series of Ni-rich TiNi1+xSn with small deviations from the half-Heusler composition. Spark Plasma Sintering plays an important role in the process by being a part of the synthesis of the material rather than solely a densification technique. Synchrotron powder X-ray diffraction and microprobe data confirm the presence of a secondary TiNi2Sn full-Heusler phase within the half-Heusler matrix. We observe a clear correlation between the amount of full-Heusler phase and the lattice thermal conductivity of the samples, resulting in decreasing total thermal conductivity with increasing TiNi2Sn fraction. This trend shows that phonons are scattered effectively as a result of the microstructure of the materials with full-Heusler inclusions in the size range of microns to tens of microns. The best performing samples with around 5% of TiNi2Sn phase exhibit maximum figures of merit of almost 0.6 between 750 K and 800 K which is an increase of ca. 35% compared to the zT of the parent compound TiNiSn.

16.
J Phys Condens Matter ; 25(18): 186004, 2013 May 08.
Article in English | MEDLINE | ID: mdl-23587787

ABSTRACT

Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron x-ray and neutron diffraction patterns suggests some site disorder on the A-site in the pyrochlore sublattice: Ru substitutes on the Nd-site up to 7.0(3)%, regardless of the different preparative conditions explored. Intrinsic magnetic and electrical transport properties have been measured. Ru 4d spins order antiferromagnetically at 143 K, as seen both in the susceptibility and in the specific heat, and there is a corresponding change in the electrical resistivity. The onset of a second antiferromagnetic ordering transition seen below 5 K is attributed to ordering of Nd 4f spins. Nd2Ru2O7 is an electrical insulator, and this behaviour is believed to be independent of the Ru-antisite disorder on the Nd-site. The electrical properties of Nd2Ru2O7 are presented in the light of data published on all A2Ru2O7 pyrochlores, and we emphasize the special structural role that Bi(3+) ions on the A-site play in driving metallic behaviour. High-temperature thermoelectric properties have also been measured. When considered in the context of known thermoelectric materials with useful figures-of-merit, it is clear that Nd2Ru2O7 has excessively high electrical resistivity which prevents it from being an effective thermoelectric. A method for screening candidate thermoelectrics is suggested.


Subject(s)
Electric Impedance , Electricity , Magnetics , Neodymium/chemistry , Niobium/chemistry , Ruthenium/chemistry , Thermal Conductivity , Models, Chemical , Neutron Diffraction , Temperature , X-Ray Diffraction
18.
ACS Nano ; 6(6): 4876-83, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22540958

ABSTRACT

Phonons are exquisitely sensitive to finite length scale effects in a wide variety of materials. To investigate confinement in combination with strong magnetoelastic interactions, we measured the infrared vibrational properties of CoFe(2)O(4) nanoparticles and compared our results to trends in the coercivity over the same size range and to the response of the bulk material. Remarkably, the spectroscopic response is sensitive to the size-induced crossover to the superparamagnetic state, which occurs between 7 and 10 nm. A spin-phonon coupling analysis supports the core-shell model. Moreover, it provides an estimate of the magnetically disordered shell thickness, which increases from 0.4 nm in the 14 nm particles to 0.8 nm in the 5 nm particles, demonstrating that the associated local lattice distortions take place on the length scale of the unit cell. These findings are important for understanding finite length scale effects in this and other magnetic oxides where magnetoelastic interactions are important.


Subject(s)
Cobalt/chemistry , Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Spectrum Analysis/methods , Materials Testing , Particle Size , Spin Labels
19.
Nano Lett ; 12(2): 1075-80, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22236089

ABSTRACT

In this work, Ag(x)Te(y)-Sb(2)Te(3) heterostructured films are prepared by ligand exchange using hydrazine soluble metal chalcogenide. Because of the created interfacial barrier, cold carriers are more strongly scattered than hot ones and thereby an over 50% enhanced thermoelectric power factor (~2 µW/(cm·K(2))) is obtained at 150 °C. This shows the possibility of engineering multiphases to further improve thermoelectric performance beyond phonon scattering through a low-temperature solution processed route.


Subject(s)
Antimony/chemistry , Membranes, Artificial , Metal Nanoparticles/chemistry , Silver/chemistry , Tellurium/chemistry , Temperature , Electricity , Particle Size , Surface Properties
20.
Inorg Chem ; 50(22): 11807-12, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-22004092

ABSTRACT

Understanding how solids form is a challenging task, and few strategies allow for elucidation of reaction pathways that are useful for designing the synthesis of solids. Here, we report a powerful solution-mediated approach for formation of nanocrystals of the thermoelectrically promising FeSb(2) that uses activated metal nanoparticles as precursors. The small particle size of the reactants ensures minimum diffusion paths, low activation barriers, and low reaction temperatures, thereby eliminating solid-solid diffusion as the rate-limiting step in conventional bulk-scale solid-state synthesis. A time- and temperature-dependent study of formation of nanoparticular FeSb(2) by X-ray powder diffraction and iron-57 Mössbauer spectroscopy showed the incipient formation of the binary phase in the temperature range of 200-250 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...