Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol Methods ; 264: 11-17, 2019 02.
Article in English | MEDLINE | ID: mdl-30381240

ABSTRACT

Hepatitis C Virus c33, a recombinant protein comprising residues 1192-1457 of NS3 helicase, has been a mainstay of HCV serology for decades. With seven unpaired cysteines, seroreactivity of E. coli expressed c33 is dependant on reductants. While engineering a c33 replacement for new anti-HCV serological tests, we sought to reduce oxidation sensitivity, a liability for immunodiagnostic reagent stability. A series of cysteine-to-serine substituted variants of a c33-like antigen was constructed and evaluated for reactivity against a panel of HCV-positive sera. Several variants were essentially nonreactive while others exhibited reactivity similar to or better than the wild-type construct. One demonstrated equivalent potency to wild-type but also diminished DTT dependence. To explore enhanced anti-NS3 reactivity, we constructed and examined an expanded series of antigens comprising individual helicase domains, the full-length helicase, additional cysteine-to-serine variants, and variants at positions critical to catalytic activity. Immunoassays using these latter NS3 helicase recombinants demonstrated that domain 1 possessed significantly more seroreactivity than previously believed, that the use of soluble full-length helicase protein enhanced sensitivity by several-fold over c33, and that anti-NS3 helicase seroreactivity was further enhanced by the introduction of point mutations which altered the catalytic activity or oxidation sensitivity of the antigen.


Subject(s)
DNA Helicases/genetics , DNA Helicases/immunology , Hepacivirus/enzymology , Hepacivirus/genetics , Serologic Tests , Viral Nonstructural Proteins/genetics , Antibodies, Viral/blood , Cysteine/genetics , Cysteine/immunology , DNA Helicases/metabolism , Escherichia coli/genetics , Genetic Engineering , Hepacivirus/immunology , Humans , Immunologic Tests , Point Mutation , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Seroconversion , Viral Nonstructural Proteins/immunology
2.
Clin Vaccine Immunol ; 17(10): 1631-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20702658

ABSTRACT

Approximately 3.2 billion people live in areas where malaria is endemic, and WHO estimates that 350 to 500 million malaria cases occur each year worldwide. This high prevalence, and the high frequency of international travel, creates significant risk for the exportation of malaria to countries where malaria is not endemic and for the introduction of malaria organisms into the blood supply. Since all four human infectious Plasmodium species have been transmitted by blood transfusion, we sought to develop an enzyme-linked immunosorbent assay (ELISA) capable of detecting antibodies elicited by infection with any of these species. The merozoite surface protein 1 (MSP1), a P. falciparum and P. vivax vaccine candidate with a well-characterized immune response, was selected for use in the assay. The MSP1 genes from P. ovale and P. malariae were cloned and sequenced (L. Birkenmeyer, A. S. Muerhoff, G. Dawson, and S. M. Desai, Am. J. Trop. Med. Hyg. 82:996-1003, 2010), and the carboxyl-terminal p19 regions of all four species were expressed in Escherichia coli. Performance results from individual p19 ELISAs were compared to those of a commercial test (Lab 21 Healthcare Malaria enzyme immunoassay [EIA]). The commercial ELISA detected all malaria patients with P. falciparum or P. vivax infections, as did the corresponding species-specific p19 ELISAs. However, the commercial ELISA detected antibodies in 0/2 and 5/8 individuals with P. malariae and P. ovale infections, respectively, while the p19 assays detected 100% of individuals with confirmed P. malariae or P. ovale infections. In experimentally infected nonhuman primates, the use of MSP1-p19 antigens from all four species resulted in the detection of antibodies within 2 to 10 weeks postinfection. Use of MSP1-p19 antigens from all four Plasmodium species in a single immunoassay would provide significantly improved efficacy compared to existing tests.


Subject(s)
Antibodies, Protozoan/blood , Malaria/diagnosis , Merozoite Surface Protein 1 , Parasitology/methods , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Gene Expression , Humans , Merozoite Surface Protein 1/genetics , Pan troglodytes , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Plasmodium malariae/genetics , Plasmodium malariae/immunology , Plasmodium ovale/genetics , Plasmodium ovale/immunology , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Platyrrhini , Recombinant Proteins/genetics , Sensitivity and Specificity
3.
Biopolymers ; 93(7): 657-67, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20526991

ABSTRACT

The recent remarkable rise in biomedical applications of antibodies and their recombinant constructs has shifted the interest in determination of antigenic epitopes in target proteins from the areas of protein science and molecular immunology to the vast fields of modern biotechnology. In this article, we demonstrated that measuring binding induced changes in two-dimensional NMR spectra enables rapid determination of antibody binding footprints on target protein antigens. Such epitopes recognized by six high-affinity monoclonal murine antibodies (mAbs) against human neutrophil gelatinase-associated lipocalin (NGAL) were determined by measuring chemical shifts or broadening of peaks in (1)H-(15)N-TROSY HSQC and (1)H-(13)C HSQC spectra of isotope-labeled NGAL occurring upon its binding to the antibodies. Locations of the epitopes defined by the NMR studies are in good agreement with the results of antibody binding pairing observed by dual-color fluorescence cross-correlation spectroscopy. In all six cases, the antibodies recognize conformational epitopes in regions of relatively rigid structure on the protein. None of the antibodies interact with the more flexible funnel-like opening of the NGAL calyx. All determined epitope areas in NGAL reflect the dimensions of respective antibody binding surface (paratopes) and contain amino acid residues that provide strong interactions. This NMR-based approach offers comprehensive information on antigenic epitopes and can be applied to numerous protein targets of diagnostic or therapeutic interest.


Subject(s)
Acute-Phase Proteins/chemistry , Antibodies, Monoclonal/chemistry , Antigens/chemistry , Epitopes/chemistry , Lipocalins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Proto-Oncogene Proteins/chemistry , Acute-Phase Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Antigens/immunology , Epitopes/immunology , Humans , Lipocalin-2 , Lipocalins/immunology , Mice , Proto-Oncogene Proteins/immunology
4.
J Med Virol ; 71(1): 150-9, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12858421

ABSTRACT

A modification of the Representational Difference Analysis (RDA) method for subtractive hybridization, termed Selectively Primed Adaptive Driver (SPAD) RDA, is described. It differs from conventional RDA primarily in the manner by which initial driver (D) and tester (T) amplicon complexities are determined, and by optimizing the composition of D with respect to T for each round of subtraction. Total nucleic acid is extracted from serum or plasma and converted to double-stranded DNA/cDNA. A polymerase chain reaction (PCR) primer containing a selective nucleotide(s) at its 3'-end is used to generate amplicons of reduced complexity. Parallel subtractions are carried out, D vs. T (DT) for enrichment of tester-unique sequences and D vs. D (Driver Control or DC) to generate an optimized driver for use in the subsequent round. Following each round, agarose gel electrophoresis is used to visually identify any DT-unique bands through a side-by-side comparison of DT and DC subtraction products. In comparison to conventional RDA, SPAD-RDA achieved greater enrichment of viral sequences from an HCV infected chimpanzee, resulting in isolation of 13.7% of the viral genome, and an overall enrichment for HCV sequences of 239-fold. Virus fragments were also obtained from an HCV-infected human sample subtracted against non-paired human driver sequences. J. Med. Virol. 71:150-159, 2003.


Subject(s)
DNA, Viral/analysis , Hepacivirus/genetics , Hepacivirus/isolation & purification , Hepatitis C/virology , Pan troglodytes/virology , Animals , Base Sequence , DNA, Viral/genetics , Humans , Nucleic Acid Hybridization , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...