Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Ecol Evol ; 35(3): 259-277, 2020 03.
Article in English | MEDLINE | ID: mdl-31791830

ABSTRACT

Transcriptomic studies lend insights into the role of transcriptional plasticity in adaptation and specialization. Recently, there has been growing interest in understanding the relationship between variation in herbivorous insect gene expression and the evolution of diet breadth. We review the studies that have emerged on insect gene expression and host plant use, and outline the questions and approaches in the field. Many candidate genes underlying herbivory and specialization have been identified, and a few key studies demonstrate increased transcriptional plasticity associated with generalist compared with specialist species. Addressing the roles that transcriptional variation plays in insect diet breadth will have important implications for our understanding of the evolution of specialization and the genetic and environmental factors that govern insect-plant interactions.


Subject(s)
Herbivory , Insecta , Animals , Diet , Insecta/genetics , Plants/genetics
2.
J Vis Exp ; (138)2018 08 31.
Article in English | MEDLINE | ID: mdl-30222148

ABSTRACT

Aphids are excellent experimental models for a variety of biological questions ranging from the evolution of symbioses and the development of polyphenisms to questions surrounding insect's interactions with their host plants. Genomic resources are available for several aphid species, and with advances in the next-generation sequencing, transcriptomic studies are being extended to non-model organisms that lack genomes. Furthermore, aphid cultures can be collected from the field and reared in the laboratory for the use in organismal and molecular experiments to bridge the gap between ecological and genetic studies. Last, many aphids can be maintained in the laboratory on their preferred host plants in perpetual, parthenogenic life cycles allowing for comparisons of asexually reproducing genotypes. Aphis nerii, the milkweed-oleander aphid, provides one such model to study insect interactions with toxic plants using both organismal and molecular experiments. Methods for the generation and maintenance of the plant and aphid cultures in the greenhouse and laboratory, DNA and RNA extractions, microsatellite analysis, de novo transcriptome assembly and annotation, transcriptome differential expression analysis, and qPCR verification of differentially expressed genes are outlined and discussed here.


Subject(s)
Aphids/metabolism , Bioengineering/methods , Insecta/genetics , Plants/genetics , Animals , Gene Expression
3.
Mol Ecol ; 26(23): 6742-6761, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29110382

ABSTRACT

Interactions between plants and herbivorous insects have been models for theories of specialization and co-evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed-specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole-body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP-glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths.


Subject(s)
Aphids/physiology , Asclepias/chemistry , Genetic Fitness , Transcriptome , Animals , Aphids/genetics , Fertility , Gene Expression Regulation , Herbivory , Inactivation, Metabolic , Secondary Metabolism
4.
Am Nat ; 188(1): 52-65, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27322121

ABSTRACT

Parasites evolve within complex abiotic and biotic environments. Because of this, it is often challenging to ascertain how evolutionary and ecological processes together affect parasite specialization. Here, we use the fungus-growing ant system, which consists of ancient, likely coevolved, complex communities, to explore the ecological and evolutionary forces shaping host-parasite specificity. We use a comparative phylogenetic framework to determine whether patterns of specificity between the fungal parasite Escovopsis and its host fungi at fine phylogenetic scales reflect patterns of specificity at broader phylogenetic levels. In other words, we ask whether parasite specificity across broad host phylogenetic relationships is maintained by specificity toward more closely related hosts. We couple this exploration with manipulations of the community context within which host-parasite interactions are taking place to evaluate how community complexity alters parasite specificity. Regardless of host community complexity, parasites displayed a consistent pattern of specialization on native hosts, that is, those that they are found attacking in nature, with the potential for occasional switching to hosts distantly related to their native hosts. These results suggest that, even within a complex community context, pairwise host and parasite adaptation and coadaptation can be the primary drivers of the evolution and maintenance of parasite specificity.


Subject(s)
Ants , Hypocreales , Phylogeny , Symbiosis , Animals , Biological Evolution
5.
Proc Natl Acad Sci U S A ; 113(13): 3567-72, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26976598

ABSTRACT

Many microorganisms with specialized lifestyles have reduced genomes. This is best understood in beneficial bacterial symbioses, where partner fidelity facilitates loss of genes necessary for living independently. Specialized microbial pathogens may also exhibit gene loss relative to generalists. Here, we demonstrate that Escovopsis weberi, a fungal parasite of the crops of fungus-growing ants, has a reduced genome in terms of both size and gene content relative to closely related but less specialized fungi. Although primary metabolism genes have been retained, the E. weberi genome is depleted in carbohydrate active enzymes, which is consistent with reliance on a host with these functions. E. weberi has also lost genes considered necessary for sexual reproduction. Contrasting these losses, the genome encodes unique secondary metabolite biosynthesis clusters, some of which include genes that exhibit up-regulated expression during host attack. Thus, the specialized nature of the interaction between Escovopsis and ant agriculture is reflected in the parasite's genome.


Subject(s)
Ants/microbiology , Genome, Fungal , Hypocreales/genetics , Hypocreales/pathogenicity , Animals , Genes, Mating Type, Fungal/genetics , Host-Parasite Interactions/genetics , Host-Parasite Interactions/physiology , Hypocreales/metabolism , Phylogeny , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...