Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Insects ; 11(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120840

ABSTRACT

Natural selection should favor the transfer of immune competence from one generation to the next in a context-dependent manner. Transgenerational immune priming (TGIP) is expected to evolve when species exploit pathogen-rich environments and exhibit extended overlap of parent-offspring generations. Dampwood termites are hemimetabolous, eusocial insects (Blattodea: Archeotermopsidae) that possess both of these traits. We predict that offspring of pathogen-exposed queens of Zootermopsis angusticollis will show evidence of a primed immune system relative to the offspring of unexposed controls. We found that Relish transcripts, one of two immune marker loci tested, were enhanced in two-day-old embryos when laid by Serratia-injected queens. These data implicate the immune deficiency (IMD) signaling pathway in TGIP. Although an independent antibacterial assay revealed that embryos do express antibacterial properties, these do not vary as a function of parental treatment. Taken together, Z. angusticollis shows transcriptional but not translational evidence for TGIP. This apparent incongruence between the transcriptional and antimicrobial response from termites suggests that effectors are either absent in two-day-old embryos or their activity is too subtle to detect with our antibacterial assay. In total, we provide the first suggestive evidence of transgenerational immune priming in a termite.

3.
Ecol Evol ; 7(9): 2925-2935, 2017 05.
Article in English | MEDLINE | ID: mdl-28479992

ABSTRACT

Parental investment theory postulates that adults can accurately perceive cues from their surroundings, anticipate the needs of future offspring based on those cues, and selectively allocate nongenetic resources to their progeny. Such context-dependent parental contributions can result in phenotypically variable offspring. Consistent with these predictions, we show that bacterially exposed Manduca sexta mothers oviposited significantly more variable embryos (as measured by mass, volume, hatching time, and hatching success) relative to naïve and control mothers. By using an in vivo "clearance of infection" assay, we also show that challenged larvae born to heat-killed- or live-Serratia-injected mothers, supported lower microbial loads and cleared the infection faster than progeny of control mothers. Our data support the notion that mothers can anticipate the future pathogenic risks and immunological needs of their unborn offspring, providing progeny with enhanced immune protection likely through transgenerational immune priming. Although the inclusion of live Serratia into oocytes does not appear to be the mechanism by which mothers confer protection to their young, other mechanisms, including epigenetic modifications in the progeny due to maternal pathogenic stress, may be at play. The adaptive nature of maternal effects in the face of pathogenic stress provides insights into parental investment, resource allocation, and life-history theories and highlights the significant role that pathogen-induced maternal effects play as generators and modulators of evolutionary change.

SELECTION OF CITATIONS
SEARCH DETAIL