Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 23(13): 3914-9, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23683593

ABSTRACT

The 5-HT2C receptor has been implicated as a critical regulator of appetite. Small molecule activation of the 5-HT2C receptor has been shown to affect food intake and regulate body weight gain in rodent models and more recently in human clinical trials. Therefore, 5-HT2C is a well validated target for anti-obesity therapy. The synthesis and structure-activity relationships of a series of novel tetrahydropyrazinoisoquinolinone 5-HT2C receptor agonists are presented. Several members of this series were identified as potent 5-HT2C receptor agonists with high functional selectivity against the 5-HT2A and 5-HT2B receptors and reduced food intake in an acute rat feeding model upon oral dosing.


Subject(s)
Isoquinolines/pharmacology , Pyrazines/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Eating/drug effects , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Models, Molecular , Molecular Structure , Pyrazines/chemical synthesis , Pyrazines/chemistry , Rats , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 21(24): 7516-21, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22041058

ABSTRACT

The design, synthesis and SAR of a novel class of valerolactam-based arylsulfonamides as potent and selective FXa inhibitors is reported. The arylsulfonamide-valerolactam scaffold was derived based on the proposed bioisosterism to the arylcyanoguanidine-caprolactam core in known FXa inhibitors. The SAR study led to compound 46 as the most potent FXa inhibitor in this series, with an IC(50) of 7 nM and EC(2×PT) of 1.7 µM. The X-ray structure of compound 40 bound to FXa shows that the sulfonamide-valerolactam scaffold anchors the aryl group in the S1 and the novel acylcytisine pharmacophore in the S4 pockets.


Subject(s)
Anticoagulants/chemistry , Factor Xa Inhibitors , Piperidones/chemistry , Serine Proteinase Inhibitors/chemistry , Anticoagulants/chemical synthesis , Anticoagulants/pharmacology , Binding Sites , Crystallography, X-Ray , Enzyme Activation/drug effects , Factor Xa/metabolism , Humans , Lactams/chemistry , Molecular Conformation , Piperidones/chemical synthesis , Piperidones/pharmacology , Protein Structure, Tertiary , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 19(24): 6882-9, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19896847

ABSTRACT

We report the design and synthesis of a novel class of N,N'-disubstituted aroylguanidine-based lactam derivatives as potent and orally active FXa inhibitors. The structure-activity relationships (SAR) investigation led to the discovery of the nicotinoyl guanidine 22 as a potent FXa inhibitor (FXa IC(50)=4 nM, EC(2xPT)=7 microM). However, the potent CYP3A4 inhibition activity (IC(50)=0.3 microM) of 22 precluded its further development. Detailed analysis of the X-ray crystal structure of compound 22 bound to FXa indicated that the substituent at the 6-position of the nicotinoyl group of 22 would be solvent-exposed, suggesting that efforts to attenuate the unwanted CYP activity could focus at this position without affecting FXa potency significantly. Further SAR studies on the 6-substituted nicotinoyl guanidines resulted in the discovery of 6-(dimethylcarbamoyl) nicotinoyl guanidine 36 (BMS-344577, IC(50)=9 nM, EC(2xPT)=2.5 microM), which was found to be a selective, orally efficacious FXa inhibitor with an excellent in vitro liability profile, favorable pharmacokinetics and pharmacodynamics in animal models.


Subject(s)
Anticoagulants/chemistry , Factor Xa Inhibitors , Guanidines/chemistry , Serine Proteinase Inhibitors/chemistry , Anticoagulants/pharmacology , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Drug Discovery , Guanidines/pharmacology , Humans , Inhibitory Concentration 50 , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 19(15): 4034-41, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19541481

ABSTRACT

The N,N'-disubstituted cyanoguanidine is an excellent bioisostere of the thiourea and ketene aminal functional groups. We report the design and synthesis of a novel class of cyanoguanidine-based lactam derivatives as potent and orally active FXa inhibitors. The SAR studies led to the discovery of compound 4 (BMS-269223, K(i)=6.5nM, EC(2xPT)=32muM) as a selective, orally bioavailable FXa inhibitor with an excellent in vitro liability profile, favorable pharmacokinetics and pharmacodynamics in animal models. The X-ray crystal structure of 4 bound in FXa is presented and key ligand-protein interactions are discussed.


Subject(s)
Antithrombin III/pharmacology , Benzofurans/pharmacology , Guanidines/chemistry , Lactams/chemistry , Administration, Oral , Animals , Antithrombin III/chemistry , Benzofurans/chemistry , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Dogs , Haplorhini , Humans , Inhibitory Concentration 50 , Kinetics , Lactams/pharmacology , Ligands , Models, Chemical , Rats , Structure-Activity Relationship , Thiourea/chemistry
6.
Bioorg Med Chem Lett ; 15(11): 2749-51, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15878269

ABSTRACT

The preferred absolute configuration of two series of F(1)F(0)-ATP synthase inhibitors was determined. Although the configuration of the active enantiomer in each series is different, each series presents the same 'triaryl' pharmacophore to the enzyme binding site.


Subject(s)
Mitochondria/enzymology , Proton-Translocating ATPases/metabolism , Binding Sites , Models, Molecular , Stereoisomerism
7.
Bioorg Med Chem Lett ; 14(4): 1027-30, 2004 Feb 23.
Article in English | MEDLINE | ID: mdl-15013016

ABSTRACT

A series of substituted guanidine derivatives were prepared and evaluated as potent and selective inhibitors of mitochondrial F(1)F(0) ATP hydrolase. The initial thiourethane derived lead molecules possessed intriguing in vitro pharmacological profiles, though contained moieties considered non-drug-like. Analogue synthesis efforts led to compounds with maintained potency and superior physical properties. Small molecules in this series which potently and selectivity inhibit ATP hydrolase and not ATP synthase may have utility as cardioprotective agents.


Subject(s)
Adenosine Triphosphate/metabolism , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Mitochondria/enzymology , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Animals , Cattle , Enzyme Inhibitors/chemical synthesis , Guanidines/chemical synthesis , Mitochondrial Proton-Translocating ATPases/metabolism , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 14(1): 99-102, 2004 Jan 05.
Article in English | MEDLINE | ID: mdl-14684307

ABSTRACT

Class III anti-arrhythmic drugs (e.g., dofetilide) prolong cardiac action potential duration (APD) by blocking the fast component of the delayed rectifier potassium current (I(Kr)). The block of I(Kr) can result in life threatening ventricular arrhythmias (i.e., torsades de pointes). Unlike I(Kr), the role of the slow component of the delayed rectifier potassium current (I(Ks)) becomes significant only at faster heart rate. Therefore selective blockers of I(Ks) could prolong APD with a reduced propensity to cause pro-arrhythmic side effects. This report describes structure-activity relationships (SARs) of a series of I(Ks) inhibitors derived from 6-alkoxytetralones with good in vitro activity (IC(50) > or =30 nM) and up to 40-fold I(Ks)/I(Kr) selectivity.


Subject(s)
Amino Alcohols/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels, Voltage-Gated , Potassium Channels/physiology , Tetrahydronaphthalenes/pharmacology , Amino Alcohols/chemistry , Animals , Delayed Rectifier Potassium Channels , Guinea Pigs , Ketones/chemistry , Ketones/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Potassium Channel Blockers/chemistry , Tetrahydronaphthalenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...