Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4135, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438334

ABSTRACT

MORPHEUS' MOLECULE1 (MOM1) is an Arabidopsis factor previously shown to mediate transcriptional silencing independent of major DNA methylation changes. Here we find that MOM1 localizes with sites of RNA-directed DNA methylation (RdDM). Tethering MOM1 with an artificial zinc finger to an unmethylated FWA promoter leads to establishment of DNA methylation and FWA silencing. This process is blocked by mutations in components of the Pol V arm of the RdDM machinery, as well as by mutation of MICRORCHIDIA 6 (MORC6). We find that at some endogenous RdDM sites, MOM1 is required to maintain DNA methylation and a closed chromatin state. In addition, efficient silencing of newly introduced FWA transgenes is impaired in the mom1 mutant. In addition to RdDM sites, we identify a group of MOM1 peaks at active chromatin near genes that colocalized with MORC6. These findings demonstrate a multifaceted role of MOM1 in genome regulation.


Subject(s)
Adenosine Triphosphatases , Arabidopsis Proteins , Arabidopsis , Transcription Factors , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatin/genetics , DNA , DNA Methylation , Homeodomain Proteins , RNA , Transcription Factors/genetics , Adenosine Triphosphatases/genetics
2.
Plant Cell ; 35(8): 3109-3126, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37208763

ABSTRACT

DNA methylation is a conserved epigenetic modification that is typically associated with silencing of transposable elements and promoter methylated genes. However, some DNA-methylated loci are protected from silencing, allowing transcriptional flexibility in response to environmental and developmental cues. Through a genetic screen in Arabidopsis (Arabidopsis thaliana), we uncovered an antagonistic relationship between the MICRORCHIDIA (MORC) protein and the IMITATION SWITCH (ISWI) complex in regulating the DNA-methylated SUPPRESSOR OF DRM1 DRM2 CMT3 (SDC) reporter. We demonstrate that components of the plant-specific ISWI complex, including CHROMATIN REMODELING PROTEIN11 (CHR11), CHR17, DDT-RELATED PROTEIN4 (DDR4), and DDR5, function to partially derepress silenced genes and transposable elements (TEs), through their function in regulating nucleosome distribution. This action also requires the known transcriptional activator DNAJ proteins, providing a mechanistic link between nucleosome remodeling and transcriptional activation. Genome-wide studies revealed that DDR4 causes changes in nucleosome distribution at numerous loci, a subset of which is associated with changes in DNA methylation and/or transcription. Our work reveals a mechanism for balancing transcriptional flexibility and faithful silencing of DNA-methylated loci. As both ISWI and MORC family genes are widely distributed across plant and animal species, our findings may represent a conserved eukaryotic mechanism for fine-tuning gene expression under epigenetic regulation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DDT/metabolism , Epigenesis, Genetic , DNA Transposable Elements , Imitative Behavior , DNA Methylation/genetics , Gene Expression Regulation, Plant/genetics
3.
bioRxiv ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36711532

ABSTRACT

MOM1 is an Arabidopsis factor previously shown to mediate transcriptional silencing independent of major DNA methylation changes. Here we found that MOM1 localizes with sites of RNA-directed DNA methylation (RdDM). Tethering MOM1 with artificial zinc finger to unmethylated FWA promoter led to establishment of DNA methylation and FWA silencing. This process was blocked by mutations in components of the Pol V arm of the RdDM machinery, as well as by mutation of MORC6 . We found that at some endogenous RdDM sites, MOM1 is required to maintain DNA methylation and a closed chromatin state. In addition, efficient silencing of newly introduced FWA transgenes was impaired by mutation of MOM1 or mutation of genes encoding the MOM1 interacting PIAL1/2 proteins. In addition to RdDM sites, we identified a group of MOM1 peaks at active chromatin near genes that colocalized with MORC6. These findings demonstrate a multifaceted role of MOM1 in genome regulation.

4.
Plant Cell ; 34(3): 947-948, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35243510

Subject(s)
Reproduction , Seeds
7.
Plant Cell ; 33(5): 1399-1400, 2021 07 02.
Article in English | MEDLINE | ID: mdl-35234956
9.
Plant Cell ; 32(8): 2449-2450, 2020 08.
Article in English | MEDLINE | ID: mdl-32605916
10.
Nat Commun ; 11(1): 2798, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493925

ABSTRACT

Mediator 12 (MED12) and MED13 are components of the Mediator multi-protein complex, that facilitates the initial steps of gene transcription. Here, in an Arabidopsis mutant screen, we identify MED12 and MED13 as positive gene regulators, both of which contribute broadly to morc1 de-repressed gene expression. Both MED12 and MED13 are preferentially required for the expression of genes depleted in active chromatin marks, a chromatin signature shared with morc1 re-activated loci. We further discover that MED12 tends to interact with genes that are responsive to environmental stimuli, including light and radiation. We demonstrate that light-induced transient gene expression depends on MED12, and is accompanied by a concomitant increase in MED12 enrichment during induction. In contrast, the steady-state expression level of these genes show little dependence on MED12, suggesting that MED12 is primarily required to aid the expression of genes in transition from less-active to more active states.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Repressor Proteins/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Chromatin/metabolism , DNA Methylation/genetics , DNA Methylation/radiation effects , Epigenesis, Genetic/radiation effects , Gene Expression Regulation, Plant/radiation effects , Genes, Plant , Genes, Suppressor , Genetic Loci , Green Fluorescent Proteins/metabolism , Light , Plants, Genetically Modified , Repressor Proteins/genetics , Up-Regulation/genetics , Up-Regulation/radiation effects
11.
Plant Cell ; 32(7): 2063-2064, 2020 07.
Article in English | MEDLINE | ID: mdl-32434854

Subject(s)
Arabidopsis , Chromatin , DNA , Histones
13.
Plant Cell ; 32(4): 793-794, 2020 04.
Article in English | MEDLINE | ID: mdl-32111669
14.
Plant Cell ; 31(9): 2169-2186, 2019 09.
Article in English | MEDLINE | ID: mdl-31266901

ABSTRACT

In Arabidopsis (Arabidopsis thaliana) leaves, starch is synthesized during the day and degraded at night to fuel growth and metabolism. Starch is degraded primarily by ß-amylases, liberating maltose, but this activity is preceded by glucan phosphorylation and is accompanied by dephosphorylation. A glucan phosphatase family member, LIKE SEX4 1 (LSF1), binds starch and is required for normal starch degradation, but its exact role is unclear. Here, we show that LSF1 does not dephosphorylate glucans. The recombinant dual specificity phosphatase (DSP) domain of LSF1 had no detectable phosphatase activity. Furthermore, a variant of LSF1 mutated in the catalytic cysteine of the DSP domain complemented the starch-excess phenotype of the lsf1 mutant. By contrast, a variant of LSF1 with mutations in the carbohydrate binding module did not complement lsf1 Thus, glucan binding, but not phosphatase activity, is required for the function of LSF1 in starch degradation. LSF1 interacts with the ß-amylases BAM1 and BAM3, and the BAM1-LSF1 complex shows amylolytic but not glucan phosphatase activity. Nighttime maltose levels are reduced in lsf1, and genetic analysis indicated that the starch-excess phenotype of lsf1 is dependent on bam1 and bam3 We propose that LSF1 binds ß-amylases at the starch granule surface, thereby promoting starch degradation.


Subject(s)
Arabidopsis/metabolism , Carbohydrate Metabolism/physiology , Dual-Specificity Phosphatases/metabolism , Starch/metabolism , beta-Amylase/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbohydrate Metabolism/genetics , Carrier Proteins , Cloning, Molecular , Dual-Specificity Phosphatases/genetics , Gene Expression Regulation, Plant , Glucans/metabolism , Phosphorylation , Plant Leaves/metabolism , Plants, Genetically Modified , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins , Sequence Alignment , Nicotiana/genetics , Nicotiana/metabolism , beta-Amylase/genetics
16.
Nat Commun ; 7: 11640, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27291711

ABSTRACT

DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , DNA Methylation/genetics , Methenyltetrahydrofolate Cyclohydrolase/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Arabidopsis Proteins/genetics , Cytoplasm/drug effects , Cytoplasm/metabolism , DNA Demethylation , Epigenesis, Genetic , Folic Acid/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Silencing , Green Fluorescent Proteins/metabolism , Histones/metabolism , Homeostasis/drug effects , Lysine/metabolism , Methenyltetrahydrofolate Cyclohydrolase/genetics , Methionine/pharmacology , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Models, Biological , Mutation/genetics , Protein Transport/drug effects , S-Adenosylmethionine/metabolism , Tetrahydrofolates/pharmacology
17.
Plant Cell ; 28(6): 1472-89, 2016 06.
Article in English | MEDLINE | ID: mdl-27207856

ABSTRACT

To uncover components of the mechanism that adjusts the rate of leaf starch degradation to the length of the night, we devised a screen for mutant Arabidopsis thaliana plants in which starch reserves are prematurely exhausted. The mutation in one such mutant, named early starvation1 (esv1), eliminates a previously uncharacterized protein. Starch in mutant leaves is degraded rapidly and in a nonlinear fashion, so that reserves are exhausted 2 h prior to dawn. The ESV1 protein and a similar uncharacterized Arabidopsis protein (named Like ESV1 [LESV]) are located in the chloroplast stroma and are also bound into starch granules. The region of highest similarity between the two proteins contains a series of near-repeated motifs rich in tryptophan. Both proteins are conserved throughout starch-synthesizing organisms, from angiosperms and monocots to green algae. Analysis of transgenic plants lacking or overexpressing ESV1 or LESV, and of double mutants lacking ESV1 and another protein necessary for starch degradation, leads us to propose that these proteins function in the organization of the starch granule matrix. We argue that their misexpression affects starch degradation indirectly, by altering matrix organization and, thus, accessibility of starch polymers to starch-degrading enzymes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Leaves/metabolism , Starch/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Mutation , Plant Leaves/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
18.
Cell ; 163(2): 445-55, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26451488

ABSTRACT

RNA-directed DNA methylation in Arabidopsis thaliana is driven by the plant-specific RNA Polymerase IV (Pol IV). It has been assumed that a Pol IV transcript can give rise to multiple 24-nt small interfering RNAs (siRNAs) that target DNA methylation. Here, we demonstrate that Pol IV-dependent RNAs (P4RNAs) from wild-type Arabidopsis are surprisingly short in length (30 to 40 nt) and mirror 24-nt siRNAs in distribution, abundance, strand bias, and 5'-adenine preference. P4RNAs exhibit transcription start sites similar to Pol II products and are featured with 5'-monophosphates and 3'-misincorporated nucleotides. The 3'-misincorporation preferentially occurs at methylated cytosines on the template DNA strand, suggesting a co-transcriptional feedback to siRNA biogenesis by DNA methylation to reinforce silencing locally. These results highlight an unusual mechanism of Pol IV transcription and suggest a "one precursor, one siRNA" model for the biogenesis of 24-nt siRNAs in Arabidopsis.


Subject(s)
Arabidopsis/metabolism , RNA, Plant/genetics , RNA, Small Interfering/genetics , Adenine/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , DNA Methylation , DNA-Directed RNA Polymerases/metabolism , Models, Biological , Transcription Initiation Site
19.
Proc Natl Acad Sci U S A ; 111(20): 7474-9, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24799676

ABSTRACT

Epigenetic gene silencing is of central importance to maintain genome integrity and is mediated by an elaborate interplay between DNA methylation, histone posttranslational modifications, and chromatin remodeling complexes. DNA methylation and repressive histone marks usually correlate with transcriptionally silent heterochromatin, however there are exceptions to this relationship. In Arabidopsis, mutation of Morpheus Molecule 1 (MOM1) causes transcriptional derepression of heterochromatin independently of changes in DNA methylation. More recently, two Arabidopsis homologues of mouse microrchidia (MORC) genes have also been implicated in gene silencing and heterochromatin condensation without altering genome-wide DNA methylation patterns. In this study, we show that Arabidopsis microrchidia (AtMORC6) physically interacts with AtMORC1 and with its close homologue, AtMORC2, in two mutually exclusive protein complexes. RNA-sequencing analyses of high-order mutants indicate that AtMORC1 and AtMORC2 act redundantly to repress a common set of loci. We also examined genetic interactions between AtMORC6 and MOM1 pathways. Although AtMORC6 and MOM1 control the silencing of a very similar set of genomic loci, we observed synergistic transcriptional regulation in the mom1/atmorc6 double mutant, suggesting that these epigenetic regulators act mainly by different silencing mechanisms.


Subject(s)
Adenosine Triphosphatases/chemistry , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Gene Silencing , Adenosine Triphosphatases/genetics , Arabidopsis Proteins/chemistry , DNA Methylation , DNA Transposable Elements , Epigenesis, Genetic , Genotype , Heterochromatin/metabolism , Mutation , Protein Binding
20.
Nature ; 507(7490): 124-128, 2014 03 06.
Article in English | MEDLINE | ID: mdl-24463519

ABSTRACT

RNA-directed DNA methylation in Arabidopsis thaliana depends on the upstream synthesis of 24-nucleotide small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV) and downstream synthesis of non-coding transcripts by Pol V. Pol V transcripts are thought to interact with siRNAs which then recruit DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) to methylate DNA. The SU(VAR)3-9 homologues SUVH2 and SUVH9 act in this downstream step but the mechanism of their action is unknown. Here we show that genome-wide Pol V association with chromatin redundantly requires SUVH2 and SUVH9. Although SUVH2 and SUVH9 resemble histone methyltransferases, a crystal structure reveals that SUVH9 lacks a peptide-substrate binding cleft and lacks a properly formed S-adenosyl methionine (SAM)-binding pocket necessary for normal catalysis, consistent with a lack of methyltransferase activity for these proteins. SUVH2 and SUVH9 both contain SRA (SET- and RING-ASSOCIATED) domains capable of binding methylated DNA, suggesting that they function to recruit Pol V through DNA methylation. Consistent with this model, mutation of DNA METHYLTRANSFERASE 1 (MET1) causes loss of DNA methylation, a nearly complete loss of Pol V at its normal locations, and redistribution of Pol V to sites that become hypermethylated. Furthermore, tethering SUVH9 [corrected] with a zinc finger to an unmethylated site is sufficient to recruit Pol V and establish DNA methylation and gene silencing. These results indicate that Pol V is recruited to DNA methylation through the methyl-DNA binding SUVH2 and SUVH9 proteins, and our mechanistic findings suggest a means for selectively targeting regions of plant genomes for epigenetic silencing.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis , DNA Methylation , DNA-Directed RNA Polymerases/metabolism , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Binding Sites/genetics , Biocatalysis , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Crystallography, X-Ray , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Flowers/growth & development , Gene Expression Regulation, Plant , Gene Silencing , Genome, Plant/genetics , Models, Molecular , Mutation/genetics , Phenotype , Protein Structure, Tertiary , Protein Transport , RNA, Plant/biosynthesis , RNA, Plant/genetics , RNA, Plant/metabolism , RNA, Small Interfering/biosynthesis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription, Genetic , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...