Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297482

ABSTRACT

The tympanoperiotic complex of a blue whale Balaenoptera musculus is described and compared to the homologous structures in the other extant and fossil baleen whale species. The periotic and the tympanic bulla represent informative anatomical regions in both functional and phylogenetic studies and for this reason a micro-CT scan of the bones was performed in order to better characterize their external aspect and to reconstruct the inner structures. In particular, the cochlea, the semicircular canals and associated portions of the periotic are reconstructed so that these structures may be used in phylogenetic analyses. We observed that the blue whale periotic is characterized by the presence of a strong dorsal protrusion which is posteriorly bordered by a previously undescribed morphological character that we name the posterotransverse fossa. The peculiar shape of the anterior process and the en echelon organization of the posterior foramina of the pars cochlearis are also described and compared. From a phylogenetic perspective, the blue whale is confirmed to be closely related to the fin whale, Balaenoptera physalus, but it is suggested, based on ear bone characters only, that it diverged before the other balaenopterid species in the phylogeny of Balaenopteridae. This placement supports a series of morphological observations suggesting that the extant blue whale was an early-diverging member of Balaenoptera. Our results help to decipher the evolutionary origin of the blue whale, the largest living animal, by allowing new and more detailed morphological analyses of the balaenopterid fossil record.

2.
Brain Behav Evol ; 96(2): 78-90, 2021.
Article in English | MEDLINE | ID: mdl-34758463

ABSTRACT

Baleen whales are considered underencephalized mammals due to their reduced brain size with respect to their body size (encephalization quotient [EQ] << 1). Despite their low EQ, mysticetes exhibit complex behavioral patterns in terms of motor abilities, vocal repertoire, and cultural learning. Very scarce information is available about the morphological evolution of the brain in this group; this makes it difficult to investigate the historical changes in brain shape and size in order to relate the origin of the complex mysticete behavioral repertoire to the evolution of specific neural substrates. Here, the first description of the virtual endocast of a fossil balaenopterid species, Marzanoptera tersillae from the Italian Pliocene, reveals an EQ of around 3, which is exceptional for baleen whales. The endocast showed a morphologically different organization of the brain in this fossil whale as the cerebral hemispheres are anteroposteriorly shortened, the cerebellum lacks the posteromedial expansion of the cerebellar hemispheres, and the cerebellar vermis is unusually reduced. The comparative reductions of the cerebral and cerebellar hemispheres suggest that the motor behavior of M. tersillae probably was less sophisticated than that exhibited by the extant rorqual and humpback species. The presence of an EQ value in this fossil species that is around 10 times higher than that of extant mysticetes opens new questions about brain evolution and provides new, invaluable information about the evolutionary path of morphological and size change in the brain of baleen whales.


Subject(s)
Fossils , Whales , Animals , Biological Evolution , Brain , Jaw
3.
J Comp Neurol ; 529(6): 1198-1227, 2021 04 15.
Article in English | MEDLINE | ID: mdl-32840887

ABSTRACT

The natural endocast Museo di Geologia e Paleontologia of the Università degli Studi di Torino (MGPT)-PU 13873 is described and analyzed in order to interpret its taxonomic affinities and its potential significance on our understanding of cetacean brain evolution. The endocast is from the early Miocene of Piedmont (between ca. 19 and 16 million years ago), Northwestern Italy, and shows a number of plesiomorphic characters. These include: scarcely rounded cerebral hemispheres, cerebellum exposed in dorsal view with little superimposition by the cerebral hemispheres, short temporal lobe, and long sylvian fissure. The distance between the hypophysis and the rostral pons is particularly high, as it was determined by the calculus of the hypothalamus quotient, suggesting that the development of a deep interpeduncular fossa was not as advanced as in living odontocetes. The encephalization quotient (EQ) of MGPT-PU 13873 is ~1.81; therefore, this specimen shows an EQ in line with other fossil whales of the same geological age (early Miocene). Comparative analysis shows that there is a critical lack of data from the late Miocene and Pliocene that prevents us to fully understand the recent evolution of the EQ diversity in whales. Moreover, the past diversity of brain size and shape in mysticetes is virtually unknown. All these observations point to the need of additional efforts to uncover evolutionary patterns and processes on cetacean brain evolution.


Subject(s)
Biological Evolution , Brain/anatomy & histology , Cetacea/anatomy & histology , Fossils/anatomy & histology , Animals , Brain/blood supply , Brain/physiology , Cetacea/physiology
4.
PeerJ ; 8: e8315, 2020.
Article in English | MEDLINE | ID: mdl-31976176

ABSTRACT

BACKGROUND: The rich fossil record of rorqual and humpback whales (Cetacea, Mysticeti, Balaenopteridae) is mainly characterized by monotypic genera since genera including more than one species are extremely rare. The discovery of new species belonging to known genera would be of great importance in order to better understand ancestor-descendant relationships and paleobiogeographic patterns in this diverse group. Recent discoveries in the southern North Sea Basin yielded a number of reasonably well preserved fossil balaenopterids from the Late Miocene; this sample includes a balaenopterid skull from Liessel, The Netherlands, which shares key characters with Archaebalaenoptera castriarquati from the Pliocene of Mediterranean. This skull is permanently held by Oertijdmuseum, Boxtel, The Netherlands, with the number MAB002286 and is investigated here. METHODS: A detailed comparative anatomical analysis of the skull MAB002286 is performed in order to understand its relationships. The age of the skull is determined by dinocyst analysis of the associated sediment. A paleobiogeographic analysis is performed to understand paleobiogeographic patterns within the balaenopterid clade the new skull belongs to. RESULTS: Our work resulted in the description of Archaebalaenoptera liesselensis new species. The geological age of the holotype skull is between 8.1 and 7.5 Ma. The phylogenetic relationships of this species reveals that it is monophyletic with Archaebalaenoptera castriarquati from the Italian Pliocene. Moreover, in combination with a more basal species of Archaebalaenoptera from the late Miocene of Peru, our paleobiogeographic analysis suggests that the North Atlantic ocean played a major role as a center of origin of a number of balaenopterid clades including Protororqualus, Archaebalaenoptera and more advanced balaenopterid taxa. From a North Atlantic center of origin, two dispersal events are inferred that led to the origins of Archaebalaenoptera species in the South Pacific and Mediterranean. The distribution of Archaebalaenoptera was antitropical in the late Miocene. The role played by the Mediterranean salinity crisis is also investigated and discussed.

5.
PeerJ ; 7: e6915, 2019.
Article in English | MEDLINE | ID: mdl-31149399

ABSTRACT

BACKGROUND: Balaenopterid mysticetes represent the most successful family-rank group of this clade. Their evolutionary history is characterized by a rich fossil record but the origin of the living genera is still largely not understood. Recent discoveries in the southern border of the North Sea revealed a number of well preserved fossil balaenopterid whales that may help resolving this problem. In particular, skull NMR 14035 shares morphological characters with the living humpback whale, Megaptera novaeangliae and, for this reason, its characteristics are investigated here. METHODS: The comparative anatomical analysis of the new specimen formed the basis of a new phylogenetic analysis of the Mysticeti based on a matrix including 350 morphological character states scored for 82 Operational Taxonomic Units. The stratigraphic age of the specimen was determined based on the analysis of the dinocyst assemblage recovered in the associated sediment. We assessed clade diversity in Balaenopteridae by counting the numbers of clades in given time intervals and then plotted the results. RESULTS: Nehalaennia devossi n. gen. et sp. is described for the first time from the late Tortonian (8.7-8.1 Ma) of the Westerschelde (The Netherlands). This new taxon belongs to Balaenopteridae and shows a surprisingly high number of advanced characters in the skull morphology. Nehalaennia devossi is compared to a large sample of balaenopterid mysticetes and a phylogenetic analysis placed it as the sister group of a clade including the genus Archaebalaenoptera. The inclusion of this fossil allowed to propose a phylogenetic hypothesis for Balaenopteridae in which (1) Eschrichtiidae (gray whales) represents a family of its own, (2) Balaenopteridae + Eschrichtiidae form a monophyletic group (superfamily Balaenopteroidea), (3) Cetotheriidae is the sister group of Balaenopteroidea, (4) living Balaenoptera species form a monophyletic group and (5) living M. novaeangliae is the sister group of Balaenoptera. Our work reveals a complex phylogenetic history of Balaenopteridae and N. devossi informs us about the early morphological transformations in this family. Over time, this family experienced a number of diversity pulses suggesting that true evolutionary radiations had taken place. The paleoecological drivers of these pulses are then investigated.

6.
PeerJ ; 5: e3464, 2017.
Article in English | MEDLINE | ID: mdl-28663936

ABSTRACT

In 1941, Abel established Balaena belgica based on a series of fused cervical vertebrae and citing other cranial fragments from the late Neogene of the Antwerp harbor (northern Belgium). Later, Plisnier-Ladame & Quinet (1969) added a neurocranium and other skeletal remains from the same area to this species. Recently, the neurocranium was re-assigned to the genus Eubalaena thanks to newer phylogenetic analyses. Here, a new description is provided of materials previously assigned to "Balaena" belgica together with taxonomic revisions. Our work suggests that the cervical complex originally designated as the type of "Balaena" belgica is too poorly preserved to be used as such and is assigned to Balaenidae gen. et sp. indet., thus making "Balaena" belgica a nomen dubium. In addition to the neurocranium, the other remains consist in a fragment of maxilla assigned to Balaenidae gen. et sp. indet. and in a humerus assigned to Eubalaena sp. Discovered in the Kruisschans Sands Member of the Lillo Formation (3.2-2.8 Ma, Piacenzian, Late Pliocene), the neurocranium is designated as the holotype of the new species Eubalaena ianitrix. Our phylogenetic analysis supports a sister-group relationship of Eubalaena ianitrix and Eubalaena glacialis, and helps constraining the ages of origin for balaenid clades. Ecological and phylogenetic data suggest that Eubalaena ianitrix may represent the direct ancestor of Eubalaena glacialis, the latter having evolved through phyletic transformation including body size increase during the temperature decline of the Late Pliocene.

7.
Coll Antropol ; 28(1): 23-40, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15636063

ABSTRACT

Several faunal assemblages excavated in deposits of different antiquity (from Lower Paleolithic to Bronze Age), located in Northern, Central and Southern Italy, were studied from the archeozoological and taphonomic point of view. Data obtained by different Authors allow reconstruction of subsistence strategies adopted by prehistoric humans in these areas and through time, in particular as far as the exploitation of animal resources is concerned. The following assemblages were considered: Isernia La Pineta (Molise; Lower Paleolithic), Grotta Breuil (Latium; Middle Paleolithic), Grotta della Ghiacciaia (Verona; Middle Paleolithic), Riparo di Fumane and Riparo Tagliente (Verona; Middle and Upper Paleolithic), Riparo Mochi (Liguria; Upper Paleolithic), Grotta della Continenza (L'Aquila; Upper Paleolithic and Mesolithic), Grotta dell'Edera (Trieste; Mesolithic and Neolithic), Grotta della Cala at Marina di Camerota (Salerno; Eneolithic), Contraguda (Sassari; Neolithic), Castellaro Lagusello (Mantova; Bronze Age). Exploitation of the vegetal resources has been analyzed in the Neolithic sites of Colle Santo Stefano (Fucino), Settefonti (L'Aquila) and Catignano (Pescara).


Subject(s)
Archaeology , Behavior , Food Supply , Mammals , Paleontology , Animals , Hominidae , Humans , Italy , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...