Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 7474304, 2022.
Article in English | MEDLINE | ID: mdl-35936981

ABSTRACT

The COVID-19 pandemic has caused a worldwide catastrophe and widespread devastation that reeled almost all countries. The pandemic has mounted pressure on the existing healthcare system and caused panic and desperation. The gold testing standard for COVID-19 detection, reverse transcription-polymerase chain reaction (RT-PCR), has shown its limitations with 70% accuracy, contributing to the incorrect diagnosis that exaggerated the complexities and increased the fatalities. The new variations further pose unseen challenges in terms of their diagnosis and subsequent treatment. The COVID-19 virus heavily impacts the lungs and fills the air sacs with fluid causing pneumonia. Thus, chest X-ray inspection is a viable option if the inspection detects COVID-19-induced pneumonia, hence confirming the exposure of COVID-19. Artificial intelligence and machine learning techniques are capable of examining chest X-rays in order to detect patterns that can confirm the presence of COVID-19-induced pneumonia. This research used CNN and deep learning techniques to detect COVID-19-induced pneumonia from chest X-rays. Transfer learning with fine-tuning ensures that the proposed work successfully classifies COVID-19-induced pneumonia, regular pneumonia, and normal conditions. Xception, Visual Geometry Group 16, and Visual Geometry Group 19 are used to realize transfer learning. The experimental results were promising in terms of precision, recall, F1 score, specificity, false omission rate, false negative rate, false positive rate, and false discovery rate with a COVID-19-induced pneumonia detection accuracy of 98%. Experimental results also revealed that the proposed work has not only correctly identified COVID-19 exposure but also made a distinction between COVID-19-induced pneumonia and regular pneumonia, as the latter is a very common disease, while COVID-19 is more lethal. These results mitigated the concern and overlap in the diagnosis of COVID-19-induced pneumonia and regular pneumonia. With further integrations, it can be employed as a potential standard model in differentiating the various lung-related infections, including COVID-19.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Pandemics , Pneumonia/diagnostic imaging , Radiography, Thoracic/methods
2.
Comput Intell Neurosci ; 2022: 1953992, 2022.
Article in English | MEDLINE | ID: mdl-35865493

ABSTRACT

COVID-19 is an infectious and contagious disease caused by the new coronavirus. The total number of cases is over 19 million and continues to grow. A common symptom noticed among COVID-19 patients is lung infection that results in breathlessness, and the lack of essential resources such as testing, oxygen, and ventilators enhances its severity. Chest X-ray can be used to design and develop a COVID-19 detection mechanism for a quicker diagnosis using AI and machine learning techniques. Due to this silver lining, various new COVID-19 detection techniques and prediction models have been introduced in recent times based on chest radiography images. However, due to a high level of unpredictability and the absence of essential data, standard models have showcased low efficiency and also suffer from overheads and complexities. This paper proposes a model fine tuning transfer learning-coronavirus 19 (Ftl-CoV19) for COVID-19 detection through chest X-rays, which embraces the ideas of transfer learning in pretrained VGG16 model with including combination of convolution, max pooling, and dense layer at different stages of model. Ftl-CoV19 reported promising experimental results; it observed training and validation accuracy of 98.82% and 99.27% with precision of 100%, recall of 98%, and F1 score of 99%. These results outperformed other conventional state of arts such as CNN, ResNet50, InceptionV3, and Xception.


Subject(s)
COVID-19 , Deep Learning , Algorithms , COVID-19/diagnosis , Humans , Neural Networks, Computer , SARS-CoV-2
3.
Ann Data Sci ; : 1-29, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-38625305

ABSTRACT

In recent times, various machine learning approaches have been widely employed for effective diagnosis and prediction of diseases like cancer, thyroid, Covid-19, etc. Likewise, Alzheimer's (AD) is also one progressive malady that destroys memory and cognitive function over time. Unfortunately, there are no dedicated AI-based solutions for diagnoses of AD to go hand in hand with medical diagnosis, even though multiple factors contribute to the diagnosis, making AI a very viable supplementary diagnostic solution. This paper reports an endeavor to apply various machine learning algorithms like SGD, k-Nearest Neighbors, Logistic Regression, Decision tree, Random Forest, AdaBoost, Neural Network, SVM, and Naïve Bayes on the dataset of affected victims to diagnose Alzheimer's disease. Longitudinal collections of subjects from OASIS dataset have been used for prediction. Moreover, some feature selection and dimension reduction methods like Information Gain, Information Gain Ratio, Gini index, Chi-Squared, and PCA are applied to rank different factors and identify the optimum number of factors from the dataset for disease diagnosis. Furthermore, performance is evaluated of each classifier in terms of ROC-AUC, accuracy, F1 score, recall, and precision as well as included comparative analysis between algorithms. Our study suggests that approximately 90% classification accuracy is observed under top-rated four features CDR, SES, nWBV, and EDUC.

SELECTION OF CITATIONS
SEARCH DETAIL