Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 44(8): 3072-3083, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36929676

ABSTRACT

While iron over-accumulation has been reported in late stage Alzheimer's disease (AD), whether this occurs early in the asymptomatic stage of AD remains unknown. We aimed to assess brain iron levels in asymptomatic AD using quantitative MR relaxometry of effective transverse relaxation rate (R2*) and longitudinal relaxation rate (R1), and recruited 118 participants comprised of three groups including healthy young participants, and cognitively normal older individuals without or with positive AD biomarkers based on cerebrospinal fluid (CSF) proteomics analysis. Compared with the healthy young group, increased R2* was found in widespread cortical and subcortical regions in the older groups. Further, significantly higher levels of R2* were found in the cognitively normal older subjects with positive CSF AD biomarker (i.e., asymptomatic AD) compared with those with negative AD biomarker in subcortical regions including the left and right caudate, left and right putamen, and left and right globus pallidus (p < .05 for all regions), suggesting increased iron content in these regions. Subcortical R2* of some regions was found to significantly correlate with CSF AD biomarkers and neuropsychological assessments of visuospatial functions. In conclusion, R2* could be a valuable biomarker for studying early pathophysiological changes in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Brain , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Iron , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid
2.
Front Aging Neurosci ; 14: 901140, 2022.
Article in English | MEDLINE | ID: mdl-36034141

ABSTRACT

While hippocampal atrophy and its regional susceptibility to Alzheimer's disease (AD) are well reported at late stages of AD, studies of the asymptomatic stage of AD are limited but could elucidate early stage pathophysiology as well as provide predictive biomarkers. In this study, we performed multi-modal magnetic resonance imaging (MRI) to estimate morphometry, functional connectivity, and tissue microstructure of hippocampal subfields in cognitively normal adults including those with asymptomatic AD. High-resolution resting-state functional, diffusion and structural MRI, cerebral spinal fluid (CSF), and neuropsychological evaluations were performed in healthy young adults (HY: n = 40) and healthy older adults with negative (HO-: n = 47) and positive (HO+ : n = 25) CSF biomarkers of AD. Morphometry, functional connectivity, and tissue microstructure were estimated from the structural, functional, and diffusion MRI images, respectively. Our results indicated that normal aging affected morphometry, connectivity, and microstructure in all hippocampal subfields, while the subiculum and CA1-3 demonstrated the greatest sensitivity to asymptomatic AD pathology. Tau, rather than amyloid-ß, was closely associated with imaging-derived synaptic and microstructural measures. Microstructural metrics were significantly associated with neuropsychological assessments. These findings suggest that the subiculum and CA1-3 are the most vulnerable in asymptomatic AD and tau level is driving these early changes.

3.
J Alzheimers Dis ; 87(3): 1131-1141, 2022.
Article in English | MEDLINE | ID: mdl-35431238

ABSTRACT

BACKGROUND: Women account for two thirds of the prevalence and incidence of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Evidence suggest that sex may differently influence the expression of proteins amyloid-beta (Aß1-42) and tau, for which early detection is crucial in prevention of the disease. OBJECTIVE: We investigated the effect of aging and cerebrospinal fluid (CSF) levels of Aß1-42 and tau on frontal metabolites measured with proton magnetic resonance spectroscopy (MRS) in a cohort of cognitively normal older women and women with MCI. METHODS: 3T single-voxel MRS was performed on the medial frontal cortex, using Point Resolved Spectroscopy (PRESS) and Mescher-Garwood Point Resolved Spectroscopy (MEGA-PRESS) in 120 women (age range 50-85). CSF samples of Aß1-42 and tau and scores of general cognition were also obtained. RESULTS: Levels of frontal gamma aminobutyric acid (GABA+) were predicted by age, independently of disease and CSF biomarkers. Importantly, levels of GABA+ were reduced in MCI patients. Additionally, we found that levels of N-acetylaspartate relative to myo-inositol (tNAA/mI) predicted cognition in MCI patients only and were not related to CSF biomarkers. CONCLUSION: This study is the first to demonstrate a strong association between frontal GABA+ levels and neurological aging in a sample consisting exclusively of healthy older women with various levels of CSF tau and Aß1-42 and women with MCI. Importantly, our results show no correlation between CSF biomarkers and MRS metabolites in this sample.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/psychology , Female , Humans , Peptide Fragments/cerebrospinal fluid , gamma-Aminobutyric Acid , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...