Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36979554

ABSTRACT

Tuberculosis (TB) has been a devastating human illness for thousands of years. According to the WHO, around 10.4 million new cases of tuberculosis are identified every year, with 1.8 million deaths. To reduce these statistics and the mortality rate, an early and accurate TB diagnosis is essential. This study offers a highly sensitive and selective electrochemical biosensor for Mycobacterium tuberculosis (MTB) detection based on a ternary nanocomposite of reduced graphene oxide, polydopamine, and gold nanoparticles (rGO-PDA-AuNP). Avidin-biotin coupling was used to bind the MTB probe DNA onto the rGO-PDA-AuNP modified glassy carbon electrode (ssDNA/avidin/rGO-PDA-AuNP). UV-Visible, Raman, XRD, and TEM were used to evaluate the structural and morphological characteristics of rGO-PDA-AuNP. Furthermore, DNA immobilization is validated using FESEM and FT-IR techniques. The modified electrodes were electrochemically analyzed using cyclic voltammetry (CV) and linear sweep voltammetry (LSV), and the results indicate that the produced electrode can detect target DNA up to 0.1 × 10-7 mM with 2.12 × 10-3 mA µM-1 sensitivity and a response time of 5 s. The constructed genosensor displayed high sensitivity and stability, and it also provides a unique strategy for diagnosing MTB at an early stage. Furthermore, our rGO-PDA-AuNP/GCE-based electrochemical platform has broad potential for creating biosensor systems for detecting various infectious pathogens and therapeutically significant biomarkers.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Mycobacterium tuberculosis , Nanocomposites , Humans , Gold/chemistry , Avidin , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , Graphite/chemistry , Electrodes , Nanocomposites/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods
2.
Environ Res ; 227: 115684, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36921790

ABSTRACT

Polydopamine (PDA) has established itself as a promising grafting and coating material, particularly for functional group-deprived electrochemically active nanomaterials such as graphene, MXene, CNT, metal nanoparticles, and so on, and has proven its extensive applicability in the design and development of electrochemical biosensor devices. However, polynorepinephrine (PNE), a sister compound of PDA, having additional -OH groups and greater coating uniformity and biocompatibility, has never been studied in the field of biosensors. Herein, we investigated PNE as a coating material for reduced graphene oxide (RGO) and gold nanoparticles (Au) in order to build an electrochemical genosensor for Mycobacterium tuberculosis (MTB) detection. Biotin-Avidin chemistry was used to covalently immobilize probe DNA (ssDNA) specific to MTB to the nanocomposite surface on glassy carbon electrode (GCE) in order to construct biosensing electrodes. The formation of RGO/PNE and RGO/PNE/Au nanocomposite as well as the immobilization of ssDNA onto the bioelectrodes are both corroborated by UV-Visible, Raman, and XRD studies with FE-SEM and HR-TEM analysis. The electrochemical studies performed using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) showed the significant enhancement in charge transfer kinetics of RGO/PNE/GCE and RGO/PNE/Au/GCE electrode compared to GO/GCE electrode. The biosensing investigations performed using ssDNA/avidin/RGO/PNE/Au/GCE bioelectrode showed high sensitivity (2.3 × 10-3 mA µM-1), low detection limit (0.1 × 10-7 µM), broad detection range (0.1 × 10-2 to 0.1 × 10-7 µM) with good selectivity and low response time (5 s) of the developed sensor. In comparison to the analogous RGO/PDA/Au material system, RGO/PNE/Au demonstrated increased enzyme loading, improved electrochemical responsiveness, and superior biosensing performance.


Subject(s)
Graphite , Metal Nanoparticles , Mycobacterium tuberculosis , Nanocomposites , Graphite/chemistry , Gold/chemistry , Avidin , Electrochemical Techniques , Metal Nanoparticles/chemistry , Carbon/chemistry , Nanocomposites/chemistry
3.
Environ Res ; 221: 115317, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36657597

ABSTRACT

Heavy metal ion (HMI) sensors are the most sought commercial devices for environmental monitoring and food analysis research due to serious health concerns associated with HMI overdosage. Herein, we developed an effective electrochemical sensor for simultaneous detection of four HMI (Cd2+, Pb2+, Fe2+, and Cu2+) using a ternary nanocomposite of reduced graphene oxide functionalized with polydopamine and alanine (ALA/pDA/rGO). Comprehensive spectroscopic and microscopic characterizations were performed to ensure the formation of the ternary nanocomposite. The developed nanocomposite on glassy carbon electrode (GCE) yields >2-fold higher current than GO/GCE electrode with excellent electrochemical stability and charge transfer rate. Using DPV, various chemical and electrochemical parameters, such as supporting electrolyte, buffer pH, metal deposition time, and potential, were optimized to achieve highly sensitive detection of targeted HMI. For Cd2+, Pb2+, Fe2+, and Cu2+ sensing devised sensor exhibited detection limits of 1.46, 2.86, 50.23, and 17.95 ppb and sensitivity of 0.0929, 0.0744, 0.0051, and 0.0394 µA/ppb, respectively, with <6% interference. The sensor worked similarly well for real water samples with HMI. This study demonstrates a novel strategy for concurrently detecting and quantifying multiple HMI in water and soil using a smart ternary nanocomposite-based electrochemical sensor, which can also detect HMI in food samples.


Subject(s)
Cadmium , Nanocomposites , Cadmium/analysis , Lead , Oxides/chemistry , Electrochemical Techniques/methods , Carbon/chemistry , Water , Nanocomposites/chemistry
4.
Curr Opin Biomed Eng ; 24: 100408, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36033159

ABSTRACT

Antibacterial properties of copper have been known for ages. With the rise of antimicrobial resistance (AMR), hospital-acquired infections, and the current SARS-CoV-2 pandemic, copper and copper-derived materials are being widely researched for healthcare ranging from therapeutics to advanced wound dressing to medical devices. We cover current research that highlights the potential uses of metallic and ionic copper, copper alloys, copper nanostructures, and copper composites as antibacterial, antifungal, and antiviral agents, including those against the SARS-CoV-2 virus. The applications of copper-enabled engineered materials in medical devices, wound dressings, personal protective equipment, and self-cleaning surfaces are discussed. We emphasize the potential of copper and copper-derived materials in combating AMR and efficiently reducing infections in clinical settings.

5.
Curr Med Chem ; 29(37): 5815-5849, 2022.
Article in English | MEDLINE | ID: mdl-34961455

ABSTRACT

Current advances in constructing functional nanomaterials and elegantly designed nanostructures have opened up new possibilities for the fabrication of viable field biosensors. Two-dimensional materials (2DMs) have fascinated much attention due to their chemical, optical, physicochemical, and electronic properties. They are ultrathin nanomaterials with unique properties such as high surface-to-volume ratio, surface charge, shape, high anisotropy, and adjustable chemical functionality. 2DMs such as graphene-based 2D materials, Silicate clays, layered double hydroxides (LDHs), MXenes, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) offer intensified physicochemical and biological functionality and have proven to be very promising candidates for biological applications and technologies. 2DMs have a multivalent structure that can easily bind to single-stranded DNA/RNA (aptamers) through covalent, non-covalent, hydrogen bond, and π-stacking interactions, whereas aptamers have a small size, excellent chemical stability, and low immunogenicity with high affinity and specificity. This review discussed the potential of various 2D material-based aptasensor for diagnostic applications, e.g., protein detection, environmental monitoring, pathogens detection, etc.


Subject(s)
Biosensing Techniques , Graphite , Nanostructures , Biosensing Techniques/methods , Clay , DNA, Single-Stranded , Graphite/chemistry , Humans , Nanostructures/chemistry , Oligonucleotides , Oxides/chemistry , RNA , Silicates
6.
J Biomol Struct Dyn ; 40(22): 12022-12036, 2022.
Article in English | MEDLINE | ID: mdl-34424128

ABSTRACT

One of the major constraints limiting the use of abundantly available lignocellulosic biomass as potential feedstock for alcohol industry is the lack of C6/C5 co-sugar fermenting yeast. The present study explores a mutant yeast Pichia kudriavzevii BGY1-γm as a potential strain for bioconversion of glucose/xylose sugars of green biomass into ethanol under batch fermentation. The mutant strain having higher alcohol dehydrogenase activity (11.31%) showed significantly higher ethanol concentration during co-fermentation of glucose/xylose sugars (14.2%) as compared to the native strain. Based on 99% sequence similarity of ADH encoding gene from the mutant with the gene sequences from other yeast strains, the ADH enzyme was identified as ADH-1 type. The study reveals first three-dimensional model of ADH-1 utilizing glucose/xylose sugars from P. kudriavzevii BGY1-γm (PkADH mutant). The refined and validated model of PkADH mutant was used for molecular docking against the substrate (acetaldehyde) and product (ethanol). Molecular docking results showed that substrate and product exhibited a binding affinity of -4.55 and -4.5 kcal/mol with PkADH mutant. Acetaldehyde and ethanol interacted at the active site of PkADH mutant via hydrogen bonds (Ser42, His69 and Asp163) and hydrophobic interactions (Cys40, Ser42, His69, Cys95, Trp123 and Asp163) to form the stable protein-ligand complex. Molecular dynamics analysis revealed that PkADH-mutant acetaldehyde and PkADH-mutant ethanol complexes were more stable than PkADH mutant. MMPBSA binding energy confirmed that binding of substrate and product results in the formation of a lower energy stable protein-ligand complex.Communicated by Ramaswamy H. Sarma.


Subject(s)
Ethanol , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Xylose , Molecular Docking Simulation , Ligands , Acetaldehyde/metabolism , Glucose/metabolism , Fermentation
7.
PLoS One ; 13(4): e0195752, 2018.
Article in English | MEDLINE | ID: mdl-29664961

ABSTRACT

Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively.


Subject(s)
Biodiversity , Climate Change , Ecosystem , Introduced Species , Plants , Geography , Satellite Imagery
8.
Int J Nanomedicine ; 10: 2155-71, 2015.
Article in English | MEDLINE | ID: mdl-25834431

ABSTRACT

Infectious diseases cause a huge burden on healthcare systems worldwide. Pathogenic bacteria establish infection by developing antibiotic resistance and modulating the host's immune system, whereas opportunistic pathogens like Pseudomonas aeruginosa adapt to adverse conditions owing to their ability to form biofilms. In the present study, silver nanoparticles were biofunctionalized with polymyxin B, an antibacterial peptide using a facile method. The biofunctionalized nanoparticles (polymyxin B-capped silver nanoparticles, PBSNPs) were assessed for antibacterial activity against multiple drug-resistant clinical strain Vibrio fluvialis and nosocomial pathogen P. aeruginosa. The results of antibacterial assay revealed that PBSNPs had an approximately 3-fold higher effect than the citrate-capped nanoparticles (CSNPs). Morphological damage to the cell membrane was followed by scanning electron microscopy, testifying PBSNPs to be more potent in controlling the bacterial growth as compared with CSNPs. The bactericidal effect of PBSNPs was further confirmed by Live/Dead staining assays. Apart from the antibacterial activity, the biofunctionalized nanoparticles were found to resist biofilm formation. Electroplating of PBSNPs onto stainless steel surgical blades retained the antibacterial activity against P. aeruginosa. Further, the affinity of polymyxin for endotoxin was exploited for its removal using PBSNPs. It was found that the prepared nanoparticles removed 97% of the endotoxin from the solution. Such multifarious uses of metal nanoparticles are an attractive means of enhancing the potency of antimicrobial agents to control infections.


Subject(s)
Anti-Bacterial Agents , Biofilms/drug effects , Endotoxins/isolation & purification , Metal Nanoparticles/chemistry , Silver , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Silver/chemistry , Silver/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...