Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203850

ABSTRACT

The SARS-CoV-2 virus, commonly known as COVID-19, occurred in 2019. It is a highly contagious illness with effects ranging from mild symptoms to severe illness. It is also one of the best-known pathogens since more than 200,000 scientific papers occurred in the last few years. With the publication of the SARS-CoV-2 (SARS-CoV-2-CTD) spike (S) protein in a complex with human ACE2 (hACE2) (PDB (6LZG)), the molecular analysis of one of the most crucial steps on the infection pathway was possible. The aim of this manuscript is to simulate the most widely spread mutants of SARS-CoV-2, namely Alpha, Beta, Gamma, Delta, Omicron, and the first recognized variant (natural wild type). With the wide search of the hypersurface of the potential energy performed using the UNRES force field, the intermediate state of the ACE2-RBD complex was found. R403, K/N/T417, L455, F486, Y489, F495, Y501, and Y505 played a crucial role in the protein recognition mechanism. The intermediate state cannot be very stable since it will prevent the infection cascade.


Subject(s)
Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , SARS-CoV-2/genetics
2.
Biomolecules ; 12(8)2022 08 18.
Article in English | MEDLINE | ID: mdl-36009034

ABSTRACT

The UNited RESidue (UNRES) model of polypeptide chains was applied to study the association of 20 peptides with sizes ranging from 6 to 32 amino-acid residues. Twelve of those were potentially aggregating hexa- or heptapeptides excised from larger proteins, while the remaining eight contained potentially aggregating sequences, functionalized by attaching larger ends rich in charged residues. For 13 peptides, the experimental data of aggregation were used. The remaining seven were synthesized, and their properties were measured in this work. Multiplexed replica-exchange simulations of eight-chain systems were conducted at 12 temperatures from 260 to 370 K at concentrations from 0.421 to 5.78 mM, corresponding to the experimental conditions. The temperature profiles of the fractions of monomers and octamers showed a clear transition corresponding to aggregate dissociation. Low simulated transition temperatures were obtained for the peptides, which did not precipitate after incubation, as well as for the H-GNNQQNY-NH2 prion-protein fragment, which forms small fibrils. A substantial amount of inter-strand ß-sheets was found in most of the systems. The results suggest that UNRES simulations can be used to assess peptide aggregation except for glutamine- and asparagine-rich peptides, for which a revision of the UNRES sidechain-sidechain interaction potentials appears necessary.


Subject(s)
Peptides , Proteins , Molecular Dynamics Simulation , Peptides/chemistry , Protein Conformation , Proteins/chemistry , Temperature
3.
Molecules ; 27(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408482

ABSTRACT

The SARS-CoV-2 virus, commonly known as COVID-19, first occurred in December 2019 in Wuhan, Hubei Province, China. Since then, it has become a tremendous threat to human health. With a pandemic threat, it is in the significant interest of the scientific world to establish its method of infection. In this manuscript, we combine knowledge of the infection mechanism with theoretical methods to answer the question of the virus's selectivity. We proposed a two-stage infection mechanism. In the first step, the virus interacts with the ACE2 receptor, with the "proper strength". When the interaction is too strong, the virus will remain in an "improper position"; if the interaction is too weak, the virus will "run away" from the cell. We also indicated three residues (positions 30, 31, and 353) located on the ACE2 protein-binding interface, which seems to be crucial for successful infection. Our results indicate that these residues are necessary for the initiation of the infection process.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism
4.
J Mol Graph Model ; 108: 108008, 2021 11.
Article in English | MEDLINE | ID: mdl-34419932

ABSTRACT

The UNited RESidue (UNRES) force field was tested in the 14th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP14), in which larger oligomeric and multimeric targets were present compared to previous editions. Three prediction modes were tested (i) ab initio (the UNRES group), (ii) contact-assisted (the UNRES-contact group), and (iii) template-assisted (the UNRES-template group). For most of the targets, the contact restraints were derived from the server models top-ranked by the DeepQA method, while the DNCON2 method was used for 11 targets. Our consensus-fragment procedure was used to run template-assisted predictions. Each group also processed the Nuclear Magnetic Resonance (NMR)- and Small Angle X-Ray Scattering (SAXS)-data assisted targets. The average Global Distance Test Total Score (GDT_TS) of the 'Model 1' predictions were 29.17, 39.32, and 56.37 for the UNRES, UNRES-contact, and UNRES-template predictions, respectively, increasing by 0.53, 2.24, and 3.76, respectively, compared to CASP13. It was also found that the GDT_TS of the UNRES models obtained in ab initio mode and in the contact-assisted mode decreases with the square root of chain length, while the exponent in this relationship is 0.20 for the UNRES-template group models and 0.11 for the best performing AlphaFold2 models, which suggests that incorporation of database information, which stems from protein evolution, brings in long-range correlations, thus enabling the correction of force-field inaccuracies.


Subject(s)
Proteins , Databases, Factual , Protein Conformation , Scattering, Small Angle , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL