Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(25): 9392-9396, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38939160

ABSTRACT

Herein, we share an overview of the scientific highlights from speakers at the latest edition of the longstanding Bürgenstock Conference.

2.
Angew Chem Int Ed Engl ; : e202405400, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727609

ABSTRACT

The chemistry of light dipnictenes has been widely investigated in the last century with remarkable achievements especially for azobenzene derivatives. In contrast, distibenes and dibismuthenes are relatively rare and show very limited reactivity. Herein, we have designed a protocol using visible light to enhance the reactivity of heavy dipnictenes. Exploiting the distinctive π-π* transition, we have been able to isolate unique examples of dipnictene-cobalt complexes. The reactivity of the distibene complex was further exploited using red light in the presence of a diazoolefin to access an unusual four-membered bicyclo[1.1.0]butane analog, containing only a single carbon atom. These findings set the bases to a conceptually new strategy in heavy element double bonds chemistry where visible light is at the front seat of bond activation.

3.
Inorg Chem ; 62(41): 16661-16668, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37782818

ABSTRACT

Phosphine-stabilized monovalent nickel complexes play an important role in catalysis, either as catalytically active species or as decomposition products. Most routes to access these complexes are highly ligand specific or rely on strong reducing agents. Our group recently disclosed a path to access nickel(I)-phenolate complexes from bis(1,5-cyclooctadiene)nickel(0) (Ni(cod)2). Herein, we demonstrate this protocol's broad applicability by ligating a wide range of mono- and bidentate phosphine ligands. We further show the versatility of the phenolate fragment as a precursor to nickel(I)-alkyl or aryl species, which are relevant to Ni catalysis or synthetically useful nickel(I)-chloride and hydride complexes. We also demonstrate that the chloride complex can be synthesized in a one-pot procedure starting from Ni(cod)2 in good yield, making this protocol a valuable alternative to current procedures. Single-crystal X-ray diffraction, IR, and EPR (or NMR) spectroscopy were employed to characterize all of the synthesized nickel complexes.

4.
Chem Sci ; 14(24): 6579-6584, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37350824

ABSTRACT

Boron-based dipyrrin chromophores (BODIPY) have found widespread application over the last twenty years in fields as diverse as medicine and materials. Thus, several efforts have been placed to exchange boron with other elements, with the aim of developing materials with complementary luminescent properties. However, despite these attempts, the incorporation of other main-group elements in dipyrrin scaffolds remains still rare. We have successfully synthesized and characterized novel chromophores based on antimony and bismuth, SBDIPY and BIDIPY. Solution stabilities have been investigated by VT-UV/vis spectroscopy and the fluorescence emission studied and supported by computational analysis. We were also able to isolate the first direct analogue of BODIPY containing fluoride handles, disclosing preliminary luminescent features.

5.
J Am Chem Soc ; 143(28): 10642-10648, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34251813

ABSTRACT

The past 20 years have seen an extensive implementation of nickel in homogeneous catalysis through the development of unique reactivity not easily achievable by using noble transition metals. Many catalytic cycles propose Ni(I) complexes as potential reactive intermediates, yet the scarcity of nickel(I) precursors and the lack of a general, non-ligand-specific protocol for their synthesis have hampered progress in this field of research. This has in turn also limited the access to novel, well-defined Ni(I) species for the development of new catalytic reactions. Herein, we report a simple, general route to access a wide variety of Ni(I)-phenolate complexes via an unusual example of an olefinic Ni(I) complex, [Ni(COD)(OPh*)] (COD = 1,5-cyclooctadiene, OPh* = O(tBu)3C6H2). This route has proven to be highly efficient for several coordination numbers and ligand classes enabling access to the following complexes: [Ni(IPr)(OPh*)] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), [Ni(dcype)(OPh*)] (dcype = 1,2-bis(dicyclohexylphosphino)ethane), [Ni(dppe)(OPh*)] (dppe = 1,2-bis(diphenylphosphino)ethane), and [Ni(terpy)(OPh*)] (terpy = 2,2':6',2″-terpyridine). Moreover, reacting [Ni(dcype)(OPh*)] with trimethylsilyl triflate has led to the isolation of a unique example of a cationic binuclear Ni(I)-arene complex. All these complexes have been characterized by single-crystal X-ray, DFT, and EPR analyses, thus providing crucial experimental and theoretical information about their coordination environment and confirming a d9 electronic structure for all complexes involved. Overall, this new synthetic approach offers exciting opportunities for the discovery of new stoichiometric and catalytic reactivity as well as the mechanistic elucidation of Ni-based catalytic cycles.

6.
Angew Chem Int Ed Engl ; 60(13): 7290-7296, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33403774

ABSTRACT

The direct dehydrogenation of alkanes is among the most efficient ways to access valuable alkene products. Although several catalysts have been designed to promote this transformation, they have unfortunately found limited applications in fine chemical synthesis. Here, we report a conceptually novel strategy for the catalytic, intermolecular dehydrogenation of alkanes using a ruthenium catalyst. The combination of a redox-active ligand and a sterically hindered aryl radical intermediate has unleashed this novel strategy. Importantly, mechanistic investigations have been performed to provide a conceptual framework for the further development of this new catalytic dehydrogenation system.

7.
Angew Chem Int Ed Engl ; 59(41): 17887-17896, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32628290

ABSTRACT

An efficient palladium-catalyzed chlorocarbonylation of aryl (pseudo)halides that gives access to a wide range of carboxylic acid derivatives has been developed. The use of butyryl chloride as a combined CO and Cl source eludes the need for toxic, gaseous carbon monoxide, thus facilitating the synthesis of high-value products from readily available aryl (pseudo)halides. The combination of palladium(0), Xantphos, and an amine base is essential to promote this broadly applicable catalytic reaction. Overall, this reaction provides access to a great variety of carbonyl-containing products through in situ transformation of the generated aroyl chloride. Combined experimental and computational studies support a reaction mechanism involving in situ generation of CO.

8.
Angew Chem Int Ed Engl ; 59(31): 12731-12735, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32343867

ABSTRACT

The reaction of a Lewis acidic borane with an alkyne is a key step in a diverse range of main group transformations. Alkyne 1,1-carboboration, the Wrackmeyer reaction, is an archetypal transformation of this kind. 1,1-Carboboration has been proposed to proceed through a zwitterionic intermediate. We report the isolation and spectroscopic, structural and computational characterization of the zwitterionic intermediates generated by reaction of B(C6 F5 )3 with alkynes. The stepwise reactivity of the zwitterion provides new mechanistic insight for 1,1-carboboration and wider B(C6 F5 )3 catalysis. Making use of intramolecular stabilization by a ferrocene substituent, we have characterized the zwitterionic intermediate in the solid state and diverted reactivity towards alkyne cyclotrimerization.

9.
Chemistry ; 26(44): 9855-9858, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32304609

ABSTRACT

Hydroboration is an emerging method for mild and selective reduction of carbonyl compounds. Typically, transition-metal or reactive main-group hydride catalysts are used in conjunction with a mild reductant such as pinacolborane. The reactivity of the main-group catalysts is a consequence of the nucleophilicity of their hydride ligands. Silicon hydrides are significantly less reactive and are therefore not efficient hydroboration catalysts. Here, a readily prepared silyl anion is reported to be an effective initiator for the reduction of aldehydes and ketones requiring mild conditions, low catalyst loadings and with a good substrate scope. The silyl anion it is shown to activate HBpin to generate a reactive borohydride in situ which reacts with aldehydes and ketones to afford the hydroboration product.

10.
Angew Chem Int Ed Engl ; 59(5): 2110-2114, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31829493

ABSTRACT

A nickel-catalyzed aryl thioether metathesis has been developed to access high-value thioethers. 1,2-Bis(dicyclohexylphosphino)ethane (dcype) is essential to promote this highly functional-group-tolerant reaction. Furthermore, synthetically challenging macrocycles could be obtained in good yield in an unusual example of ring-closing metathesis that does not involve alkene bonds. In-depth organometallic studies support a reversible Ni0 /NiII pathway to product formation. Overall, this work not only provides a more sustainable alternative to previous catalytic systems based on Pd, but also presents new applications and mechanistic information that are highly relevant to the further development and application of unusual single-bond metathesis reactions.

11.
Angew Chem Int Ed Engl ; 59(7): 2904-2910, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31769578

ABSTRACT

Described herein are two different methods for the synthesis of vinyl halides by a shuttle catalysis based iridium-catalyzed transfer hydrohalogenation of unactivated alkynes. The use of 4-chlorobutan-2-one or tert-butyl halide as donors of hydrogen halides allows this transformation in the absence of corrosive reagents, such as hydrogen halides or acid chlorides, thus largely improving the functional-group tolerance and safety profile of these reactions compared to the state-of-the-art. This method has granted access to alkenyl halide compounds containing acid-sensitive groups, such as tertiary alcohols, silyl ethers, and acetals. The synthetic value of those methodologies has been demonstrated by gram-scale synthesis where low catalyst loading was achieved.

12.
J Am Chem Soc ; 141(41): 16479-16485, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31539230

ABSTRACT

A mechanistic study on the origin of the difference in reactivity between Ir catalysts for C-H borylation reactions is reported. Catalytic reactions of B2pin2 with a series of substrates that require high temperatures and long reaction times were conducted. These reactions catalyzed by the combination of [Ir(COD)(OMe)]2 and 3,4,7,8-tetramethylphenanthroline (tmphen) occur in yields that are substantially higher than those of reactions catalyzed by [Ir(COD)(OMe)]2 and 4,4'-di-tert-butylbipyridine (dtbpy). The electronic properties of Ir catalysts ligated by dtbpy or tmphen and their stoichiometric reactivity were investigated. It was found that a longer lifetime rather than higher reactivity of the catalyst leads to higher yields of reactions catalyzed by Ir-tmphen. The catalyst ligated by dtbpy decomposes principally by dissociation of the ligand and rapid borylation at the positions alpha to nitrogen. Thus, the greater stability of the catalyst containing tmphen results from its greater binding constant.


Subject(s)
Boron Compounds/chemistry , Iridium/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Catalysis , Hydrogen Bonding , Ligands , Molecular Structure
13.
Angew Chem Int Ed Engl ; 55(49): 15356-15359, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27860199

ABSTRACT

An aluminum-catalyzed hydroboration of alkynes using either the commercially available aluminum hydride DIBAL-H or bench-stable Et3 Al⋅DABCO as the catalyst and H-Bpin as both the boron reagent and stoichiometric hydride source has been developed. Mechanistic studies revealed a unique mode of reactivity in which the reaction is proposed to proceed through hydroalumination and σ-bond metathesis between the resultant alkenyl aluminum species and HBpin, which acts to drive turnover of the catalytic cycle.

14.
ACS Catal ; 6(5): 2930-2938, 2016 May 06.
Article in English | MEDLINE | ID: mdl-29291137

ABSTRACT

A palladium N-heterocyclic carbene catalyzed methodology for the synthesis of substituted, N-unprotected indoles and azaindoles is reported. The protocol permits access to various, highly substituted members of these classes of compounds. Although two possible reaction pathways (deprotonative and Heck-like) can be proposed, control experiments, supported by computational studies, point toward a deprotonative mechanism being operative.

SELECTION OF CITATIONS
SEARCH DETAIL
...