Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters










Publication year range
2.
Proc Natl Acad Sci U S A ; 120(27): e2301884120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37368927

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) can form a mutually beneficial symbiotic relationship with most land plants. They are known to secrete lysin motif (LysM) effectors into host root cells for successful colonization. Intriguingly, plants secrete similar types of LysM proteins; however, their role in plant-microbe interactions is unknown. Here, we show that Medicago truncatula deploys LysM extracellular (LysMe) proteins to facilitate symbiosis with AMF. Promoter analyses demonstrated that three M. truncatula LysMe genes MtLysMe1/2/3, are expressed in arbuscule-containing cells and those adjacent to intercellular hyphae. Localization studies showed that these proteins are targeted to the periarbuscular space between the periarbuscular membrane and the fungal cell wall of the branched arbuscule. M. truncatula mutants in which MtLysMe2 was knocked out via CRISPR/Cas9-targeted mutagenesis exhibited a significant reduction in AMF colonization and arbuscule formation, whereas genetically complemented transgenic plants restored wild-type level AMF colonization. In addition, knocking out the ortholog of MtLysMe2 in tomato resulted in a similar defect in AMF colonization. In vitro binding affinity precipitation assays suggested binding of MtLysMe1/2/3 with chitin and chitosan, while microscale thermophoresis (MST) assays revealed weak binding of these proteins with chitooligosaccharides. Moreover, application of purified MtLysMe proteins to root segments could suppress chitooctaose (CO8)-induced reactive oxygen species production and expression of reporter genes of the immune response without impairing chitotetraose (CO4)-triggered symbiotic responses. Taken together, our results reveal that plants, like their fungal partners, also secrete LysM proteins to facilitate symbiosis establishment.


Subject(s)
Medicago truncatula , Mycorrhizae , Symbiosis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Mycorrhizae/physiology , Hyphae/metabolism , Chitin/metabolism , Medicago truncatula/microbiology , Plant Roots/metabolism , Gene Expression Regulation, Plant
3.
BMC Genomics ; 24(1): 53, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36709253

ABSTRACT

BACKGROUND: Arbuscular mycorrhizal (AM) fungi are arguably the most important symbionts of plants, offering a range of benefits to their hosts. However, the provisioning of these benefits does not appear to be uniform among AM fungal individuals, with genetic variation between fungal symbionts having a substantial impact on plant performance. Interestingly, genetic variation has also been reported within fungal individuals, which contain millions of haploid nuclei sharing a common cytoplasm. In the model AM fungus, Rhizophagus irregularis, several isolates have been reported to be dikaryotes, containing two genetically distinct types of nuclei recognized based on their mating-type (MAT) locus identity. However, their extremely coenocytic nature and lack of a known single nucleus stage has raised questions on the origin, distribution and dynamics of this genetic variation. RESULTS: Here we performed DNA and RNA sequencing at the mycelial individual, single spore and single nucleus levels to gain insight into the dynamic genetic make-up of the dikaryote-like R. irregularis C3 isolate and the effect of different host plants on its genetic variation. Our analyses reveal that parallel spore and root culture batches can have widely variable ratios of two main genotypes in C3. Additionally, numerous polymorphisms were found with frequencies that deviated significantly from the general genotype ratio, indicating a diverse population of slightly different nucleotypes. Changing host plants did not show consistent host effects on nucleotype ratio's after multiple rounds of subculturing. Instead, we found a major effect of host plant-identity on allele-specific expression in C3. CONCLUSION: Our analyses indicate a highly dynamic/variable genetic organization in different isolates of R. irregularis. Seemingly random fluctuations in nucleotype ratio's upon spore formation, recombination events, high variability of non-tandemly repeated rDNA sequences and host-dependent allele expression all add levels of variation that may contribute to the evolutionary success of these widespread symbionts.


Subject(s)
Glomeromycota , Mycorrhizae , Humans , Alleles , Mycorrhizae/genetics , Polymorphism, Genetic , Plants/genetics , Symbiosis/genetics , Plant Roots
4.
New Phytol ; 235(4): 1575-1588, 2022 08.
Article in English | MEDLINE | ID: mdl-35510807

ABSTRACT

Plant growth-promoting rhizobacteria are involved in altering secondary root (SR) formation, but hitherto there has been no distinction between the different types of SRs upon induction of soil biota, and the genetic pathways involved. By using plate and soil systems, we studied the effects of the Pseudomonas strains CM11 and WCS417 on plant performance with a focus on root development. Through a combination of cellular, molecular and genetic analyses, we investigated the type of SRs induced upon CM11 and WCS417 root inoculation using genetic pathways associated with specific SR types. CM11 was shown to affect the root architecture differently from WCS417. CM11 inoculation leads to primary root arrest, whereas WCS417 reveals a longer primary root. Both CM11 and WCS417 activate the PLETHORA 3,5,7-controlled lateral root pathway, rather than the WUSCHEL-RELATED HOMEOBOX 11,12-controlled adventitious (lateral) root pathway. In addition, CM11 promotes plant growth in model and various crop species. It improves plant fitness traits, such as bigger shoots, faster bolting and higher yield in terms of seeds. Our results indicate that the root system architecture can be promoted by activation of PLETHORA 3,5,7 dependent primed lateral pre-branch sites upon inoculation with CM11, which creates great potential to gain a better understanding of root plasticity.


Subject(s)
Plant Roots , Pseudomonas , Plant Development , Seeds , Soil
5.
ISME J ; 16(8): 1907-1920, 2022 08.
Article in English | MEDLINE | ID: mdl-35444261

ABSTRACT

The root bacterial microbiome is important for the general health of the plant. Additionally, it can enhance tolerance to abiotic stresses, exemplified by plant species found in extreme ecological niches like deserts. These complex microbe-plant interactions can be simplified by constructing synthetic bacterial communities or SynComs from the root microbiome. Furthermore, SynComs can be applied as biocontrol agents to protect crops against abiotic stresses such as high salinity. However, there is little knowledge on the design of a SynCom that offers a consistent protection against salt stress for plants growing in a natural and, therefore, non-sterile soil which is more realistic to an agricultural setting. Here we show that a SynCom of five bacterial strains, originating from the root of the desert plant Indigofera argentea, protected tomato plants growing in a non-sterile substrate against a high salt stress. This phenotype correlated with the differential expression of salt stress related genes and ion accumulation in tomato. Quantification of the SynCom strains indicated a low penetrance into the natural soil used as the non-sterile substrate. Our results demonstrate how a desert microbiome could be engineered into a simplified SynCom that protected tomato plants growing in a natural soil against an abiotic stress.


Subject(s)
Microbiota , Solanum lycopersicum , Bacteria/genetics , Crops, Agricultural , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Microbiota/genetics , Plant Roots/microbiology , Rhizosphere , Salt Stress , Soil , Soil Microbiology
6.
Mol Plant Microbe Interact ; 35(7): 592-603, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35316093

ABSTRACT

Plants harbor in and at their roots bacterial microbiomes that contribute to their health and fitness. The microbiome composition is controlled by the environment and plant genotype. Previously, it was shown that the plant genotype-dependent dissimilarity of root microbiome composition of different species becomes smaller under drought stress. However, it remains unknown whether this reduced plant genotype-dependent effect is a specific response to drought stress or a more generic response to abiotic stress. To test this, we studied the effect of salt stress on two distinct barley (Hordeum vulgare L.) genotypes: the reference cultivar Golden Promise and the Algerian landrace AB. As inoculum, we used soil from salinized and degraded farmland on which barley was cultivated. Controlled laboratory experiments showed that plants inoculated with this soil displayed growth stimulation under high salt stress (200 mM) in a plant genotype-independent manner, whereas the landrace AB also showed significant growth stimulation at low salt concentrations. Subsequent analysis of the root microbiomes revealed a reduced dissimilarity of the bacterial communities of the two barley genotypes in response to high salt, especially in the endophytic compartment. High salt level did not reduce α-diversity (richness) in the endophytic compartment of both plant genotypes but was associated with an increased number of shared strains that respond positively to high salt. Among these, Pseudomonas spp. were most abundant. These findings suggest that the plant genotype-dependent microbiome composition is altered generically by abiotic stress.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Hordeum , Microbiota , Bacteria/genetics , Genotype , Hordeum/genetics , Hordeum/metabolism , Plant Roots/microbiology , Salt Tolerance , Soil
7.
Plant Cell ; 33(11): 3470-3486, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34469578

ABSTRACT

To acquire sufficient mineral nutrients such as phosphate (Pi) from the soil, most plants engage in symbiosis with arbuscular mycorrhizal (AM) fungi. Attracted by plant-secreted strigolactones (SLs), the fungi colonize the roots and form highly branched hyphal structures called arbuscules inside inner cortex cells. The host plant must control the different steps of this interaction to maintain its symbiotic nature. However, how plants sense the amount of Pi obtained from the fungus, and how this determines the arbuscule lifespan, are far from understood. Here, we show that Medicago truncatula SPX-domain containing proteins SPX1 and SPX3 regulate root Pi starvation responses, in part by interacting with PHOSPHATE RESPONSE REGULATOR2, as well as fungal colonization and arbuscule degradation. SPX1 and SPX3 are induced upon Pi starvation but become more restricted to arbuscule-containing cells upon the establishment of symbiosis. This induction in arbuscule-containing cells is associated with the presence of cis-regulatory AW-boxes and transcriptional regulation by the WRINKLED1-like transcription factor WRI5a. Under Pi-limiting conditions, SPX1 and SPX3 facilitate the expression of the SL biosynthesis gene DWARF27, which could help explain the increased fungal branching in response to root exudates. Later, in arbuscule-containing cells, SPX1 and SPX3 redundantly control arbuscule degradation. Thus, SPX proteins play important roles as phosphate sensors to maintain a beneficial AM symbiosis.


Subject(s)
Homeostasis/genetics , Medicago truncatula/physiology , Mycorrhizae/physiology , Phosphates/physiology , Plant Proteins/genetics , Medicago truncatula/genetics , Plant Proteins/metabolism
8.
Environ Sci Technol ; 55(11): 7256-7265, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34013726

ABSTRACT

Desert steppe, a unique ecotone between steppe and desert in Eurasia, is considered highly vulnerable to global change. However, the long-term impact of warming and nitrogen deposition on plant biomass production and ecosystem carbon exchange in a desert steppe remains unknown. A 12-year field experiment was conducted in a Stipa breviflora desert steppe in northern China. A split-design was used, with warming simulated by infrared radiators as the primary factor and N addition as the secondary factor. Our long-term experiment shows that warming did not change net ecosystem exchange (NEE) or total aboveground biomass (TAB) due to contrasting effects on C4 (23.4% increase) and C3 (11.4% decrease) plant biomass. However, nitrogen addition increased TAB by 9.3% and NEE by 26.0% by increasing soil available N content. Thus, the studied desert steppe did not switch from a carbon sink to a carbon source in response to global change and positively responded to nitrogen deposition. Our study indicates that the desert steppe may be resilient to long-term warming by regulating plant species with contrasting photosynthetic types and that nitrogen deposition could increase plant growth and carbon sequestration, providing negative feedback on climate change.


Subject(s)
Ecosystem , Nitrogen , Carbon , China , Nitrogen/analysis , Soil
9.
Plant Physiol ; 186(3): 1591-1605, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33744928

ABSTRACT

Legume and rhizobium species can establish a nitrogen-fixing nodule symbiosis. Previous studies have shown that several transcription factors that play a role in (lateral) root development are also involved in nodule development. Chromatin remodeling factors, like transcription factors, are key players in regulating gene expression. However, studies have not investigated whether chromatin remodeling genes that are essential for root development are also involved in nodule development. Here, we studied the role of Medicago (Medicago truncatula) histone deacetylases (MtHDTs) in nodule development. Arabidopsis (Arabidopsis thaliana) orthologs of HDTs have been shown to play a role in root development. MtHDT expression is induced in nodule primordia and is maintained in the nodule meristem and infection zone. Conditional, nodule-specific knockdown of MtHDT expression by RNAi blocks nodule primordium development. A few nodules may still form, but their nodule meristems are smaller, and rhizobial colonization of the cells derived from the meristem is markedly reduced. Although the HDTs are expressed during nodule and root development, transcriptome analyses indicate that HDTs control the development of each organ in a different manner. During nodule development, the MtHDTs positively regulate 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 (MtHMGR1). Decreased expression of MtHMGR1 is sufficient to explain the inhibition of primordium formation.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Histone Deacetylases/metabolism , Medicago truncatula/growth & development , Medicago truncatula/genetics , Root Nodules, Plant/growth & development , Root Nodules, Plant/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Histone Deacetylases/genetics , Medicago truncatula/metabolism , Morphogenesis/genetics , Morphogenesis/physiology , Plant Development/genetics , Root Nodules, Plant/metabolism , Symbiosis/genetics , Symbiosis/physiology
10.
New Phytol ; 230(3): 1142-1155, 2021 05.
Article in English | MEDLINE | ID: mdl-33507543

ABSTRACT

Arguably, symbiotic arbuscular mycorrhizal (AM) fungi have the broadest host range of all fungi, being able to intracellularly colonise root cells in the vast majority of all land plants. This raises the question how AM fungi effectively deal with the immune systems of such a widely diverse range of plants. Here, we studied the role of a nuclear-localisation signal-containing effector from Rhizophagus irregularis, called Nuclear Localised Effector1 (RiNLE1), that is highly and specifically expressed in arbuscules. We showed that RiNLE1 is able to translocate to the host nucleus where it interacts with the plant core nucleosome protein histone 2B (H2B). RiNLE1 is able to impair the mono-ubiquitination of H2B, which results in the suppression of defence-related gene expression and enhanced colonisation levels. This study highlights a novel mechanism by which AM fungi can effectively control plant epigenetic modifications through direct interaction with a core nucleosome component. Homologues of RiNLE1 are found in a range of fungi that establish intimate interactions with plants, suggesting that this type of effector may be more widely recruited to manipulate host defence responses.


Subject(s)
Glomeromycota , Mycorrhizae , Fungi , Histones , Plant Roots , Symbiosis
11.
New Phytol ; 230(1): 290-303, 2021 04.
Article in English | MEDLINE | ID: mdl-33471433

ABSTRACT

NIN (NODULE INCEPTION) is a transcription factor that plays a key role during root nodule initiation. However, its role in later nodule developmental stages is unclear. Both NIN mRNA and protein accumulated at the highest level in the proximal part of the infection zone in Medicago truncatula nodules. Two nin weak allele mutants, nin-13/16, form a rather normal nodule infection zone, whereas a fixation zone is not formed. Instead, a zone with defence responses and premature senescence occurred and symbiosome development gets arrested. Mutations in nin-13/16 resulted in a truncated NIN lacking the conserved PB1 domain. However, this did not cause the nodule phenotype as nin mutants expressing NINΔPB1 formed wild-type-like nodule. The phenotype is likely to be caused by reduced NIN mRNA levels in the cytoplasm. Transcriptome analyses of nin-16 nodules showed that expression levels of defence/senescence-related genes are markedly increased, whereas the levels of defence suppressing genes are reduced. Although defence/senescence seems well suppressed in the infection zone, the transcriptome is already markedly changed in the proximal part of infection zone. In addition to its function in infection and nodule organogenesis, NIN also plays a major role at the transition from infection to fixation zone in establishing a functional symbiosis.


Subject(s)
Medicago truncatula , Gene Expression Regulation, Plant , Medicago truncatula/genetics , Medicago truncatula/metabolism , Nitrogen Fixation , Plant Proteins/genetics , Plant Proteins/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Symbiosis
12.
Results Probl Cell Differ ; 69: 387-408, 2020.
Article in English | MEDLINE | ID: mdl-33263880

ABSTRACT

Nitrogen-fixing root nodule symbiosis can sustain the development of the host plants under nitrogen-limiting conditions. Such symbiosis occurs only in a clade of angiosperms known as the nitrogen-fixing clade (NFC). It has long been proposed that root nodule symbiosis evolved several times (in parallel) in the NFC. Two recent phylogenomic studies compared the genomes of nodulating and related non-nodulating species across the four orders of the NFC and found that genes essential for nodule formation are lost or pseudogenized in the non-nodulating species. As these symbiosis genes are specifically involved in the symbiotic interaction, it means that the presence of pseudogenes and the loss of symbiosis genes strongly suggest that their ancestor, which still had functional genes, most likely had a symbiosis with nitrogen-fixing bacteria. These findings agree with the hypothesis that nodulation evolved once at the common ancestor of the NFC, and challenge the hypothesis of parallel evolution. In this chapter, we will cover the current understandings on actinorhizal-type and legume nodule development, and discuss the evolution of the legume nodule type.


Subject(s)
Biological Evolution , Fabaceae/microbiology , Nitrogen Fixation , Plant Root Nodulation , Symbiosis , Fabaceae/genetics , Nitrogen , Phylogeny
13.
Science ; 369(6504): 620-621, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32764052
14.
Plant Physiol ; 184(2): 1004-1023, 2020 10.
Article in English | MEDLINE | ID: mdl-32669419

ABSTRACT

Rhizobium nitrogen-fixing nodule symbiosis occurs in two taxonomic lineages: legumes (Fabaceae) and the genus Parasponia (Cannabaceae). Both symbioses are initiated upon the perception of rhizobium-secreted lipochitooligosaccharides (LCOs), called Nod factors. Studies in the model legumes Lotus japonicus and Medicago truncatula showed that rhizobium LCOs are perceived by a heteromeric receptor complex of distinct Lys motif (LysM)-type transmembrane receptors named NOD FACTOR RECEPTOR1 (LjNFR1) and LjNFR5 (L. japonicus) and LYSM DOMAIN CONTAINING RECEPTOR KINASE3 (MtLYK3)-NOD FACTOR PERCEPTION (MtNFP; M. truncatula). Recent phylogenomic comparative analyses indicated that the nodulation traits of legumes, Parasponia spp., as well as so-called actinorhizal plants that establish a symbiosis with diazotrophic Frankia spp. bacteria share an evolutionary origin about 110 million years ago. However, the evolutionary trajectory of LysM-type LCO receptors remains elusive. By conducting phylogenetic analysis, transcomplementation studies, and CRISPR-Cas9 mutagenesis in Parasponia andersonii, we obtained insight into the origin of LCO receptors essential for nodulation. We identified four LysM-type receptors controlling nodulation in P. andersonii: PanLYK1, PanLYK3, PanNFP1, and PanNFP2 These genes evolved from ancient duplication events predating and coinciding with the origin of nodulation. Phylogenetic and functional analyses associated the occurrence of a functional NFP2-orthologous receptor to LCO-driven nodulation. Legumes and Parasponia spp. use orthologous LysM-type receptors to perceive rhizobium LCOs, suggesting a shared evolutionary origin of LCO-driven nodulation. Furthermore, we found that both PanLYK1 and PanLYK3 are essential for intracellular arbuscule formation of mutualistic endomycorrhizal fungi. PanLYK3 also acts as a chitin oligomer receptor essential for innate immune signaling, demonstrating functional analogy to CHITIN ELECITOR RECEPTOR KINASE-type receptors.


Subject(s)
Cannabaceae/genetics , Evolution, Molecular , Fabaceae/genetics , Lipopolysaccharides/genetics , Lipopolysaccharides/metabolism , Plant Root Nodulation/genetics , Symbiosis/genetics , Cannabaceae/physiology , Fabaceae/physiology , Genes, Plant , Mycorrhizae/genetics , Mycorrhizae/physiology , Phylogeny , Plant Root Nodulation/physiology , Rhizobium/genetics , Rhizobium/physiology , Root Nodules, Plant/metabolism , Symbiosis/physiology
15.
Genes (Basel) ; 11(7)2020 07 11.
Article in English | MEDLINE | ID: mdl-32664480

ABSTRACT

Legumes and actinorhizal plants are capable of forming root nodules symbiosis with rhizobia and Frankia bacteria. All these nodulating species belong to the nitrogen fixation clade. Most likely, nodulation evolved once in the last common ancestor of this clade. NIN (NODULE INCEPTION) is a transcription factor that is essential for nodulation in all studied species. Therefore, it seems probable that it was recruited at the start when nodulation evolved. NIN is the founding member of the NIN-like protein (NLP) family. It arose by duplication, and this occurred before nodulation evolved. Therefore, several plant species outside the nitrogen fixation clade have NLP(s), which is orthologous to NIN. In this review, we discuss how NIN has diverged from the ancestral NLP, what minimal changes would have been essential for it to become a key transcription controlling nodulation, and which adaptations might have evolved later.


Subject(s)
Biological Evolution , Nitrogen Fixation/genetics , Rhizobium/genetics , Root Nodules, Plant/genetics , Fabaceae/genetics , Fabaceae/growth & development , Fabaceae/microbiology , Frankia/genetics , Frankia/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Root Nodulation/genetics , Plant Root Nodulation/physiology , Rhizobium/metabolism , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Symbiosis/genetics
16.
ISME J ; 14(10): 2433-2448, 2020 10.
Article in English | MEDLINE | ID: mdl-32641729

ABSTRACT

As a model for genetic studies, Arabidopsis thaliana (Arabidopsis) offers great potential to unravel plant genome-related mechanisms that shape the root microbiome. However, the fugitive life history of this species might have evolved at the expense of investing in capacity to steer an extensive rhizosphere effect. To determine whether the rhizosphere effect of Arabidopsis is different from other plant species that have a less fugitive life history, we compared the root microbiome of Arabidopsis to eight other, later succession plant species from the same habitat. The study included molecular analysis of soil, rhizosphere, and endorhizosphere microbiome both from the field and from a laboratory experiment. Molecular analysis revealed that the rhizosphere effect (as quantified by the number of enriched and depleted bacterial taxa) was ~35% lower than the average of the other eight species. Nevertheless, there are numerous microbial taxa differentially abundant between soil and rhizosphere, and they represent for a large part the rhizosphere effects of the other plants. In the case of fungal taxa, the number of differentially abundant taxa in the Arabidopsis rhizosphere is 10% of the other species' average. In the plant endorhizosphere, which is generally more selective, the rhizosphere effect of Arabidopsis is comparable to other species, both for bacterial and fungal taxa. Taken together, our data imply that the rhizosphere effect of the Arabidopsis is smaller in the rhizosphere, but equal in the endorhizosphere when compared to plant species with a less fugitive life history.


Subject(s)
Arabidopsis , Microbiota , Plant Roots , Rhizosphere , Soil Microbiology
17.
Front Plant Sci ; 11: 354, 2020.
Article in English | MEDLINE | ID: mdl-32308661

ABSTRACT

How cells control the proper delivery of vesicles and their associated cargo to specific plasma membrane (PM) domains upon internal or external cues is a major question in plant cell biology. A widely held hypothesis is that expansion of plant exocytotic machinery components, such as SNARE proteins, has led to a diversification of exocytotic membrane trafficking pathways to function in specific biological processes. A key biological process that involves the creation of a specialized PM domain is the formation of a host-microbe interface (the peri-arbuscular membrane) in the symbiosis with arbuscular mycorrhizal fungi. We have previously shown that the ability to intracellularly host AM fungi correlates with the evolutionary expansion of both v- (VAMP721d/e) and t-SNARE (SYP132α) proteins, that are essential for arbuscule formation in Medicago truncatula. Here we studied to what extent the symbiotic SNAREs are different from their non-symbiotic family members and whether symbiotic SNAREs define a distinct symbiotic membrane trafficking pathway. We show that all tested SYP1 family proteins, and most of the non-symbiotic VAMP72 members, are able to complement the defect in arbuscule formation upon knock-down/-out of their symbiotic counterparts when expressed at sufficient levels. This functional redundancy is in line with the ability of all tested v- and t-SNARE combinations to form SNARE complexes. Interestingly, the symbiotic t-SNARE SYP132α appeared to occur less in complex with v-SNAREs compared to the non-symbiotic syntaxins in arbuscule-containing cells. This correlated with a preferential localization of SYP132α to functional branches of partially collapsing arbuscules, while non-symbiotic syntaxins accumulate at the degrading parts. Overexpression of VAMP721e caused a shift in SYP132α localization toward the degrading parts, suggesting an influence on its endocytic turn-over. These data indicate that the symbiotic SNAREs do not selectively interact to define a symbiotic vesicle trafficking pathway, but that symbiotic SNARE complexes are more rapidly disassembled resulting in a preferential localization of SYP132α at functional arbuscule branches.

18.
Plant Cell ; 32(6): 1868-1885, 2020 06.
Article in English | MEDLINE | ID: mdl-32276984

ABSTRACT

Some plants fix atmospheric nitrogen by hosting symbiotic diazotrophic rhizobia or Frankia bacteria in root organs known as nodules. Such nodule symbiosis occurs in 10 plant lineages in four taxonomic orders: Fabales, Fagales, Cucurbitales, and Rosales, which are collectively known as the nitrogen-fixing clade. Nodules are divided into two types based on differences in ontogeny and histology: legume-type and actinorhizal-type nodules. The evolutionary relationship between these nodule types has been a long-standing enigma for molecular and evolutionary biologists. Recent phylogenomic studies on nodulating and nonnodulating species in the nitrogen-fixing clade indicated that the nodulation trait has a shared evolutionary origin in all 10 lineages. However, this hypothesis faces a conundrum in that legume-type and actinorhizal-type nodules have been regarded as fundamentally different. Here, we analyzed the actinorhizal-type nodules formed by Parasponia andersonii (Rosales) and Alnus glutinosa (Fagales) and found that their ontogeny is more similar to that of legume-type nodules (Fabales) than generally assumed. We also show that in Medicago truncatula, a homeotic mutation in the co-transcriptional regulator gene NODULE ROOT1 (MtNOOT1) converts legume-type nodules into actinorhizal-type nodules. These experimental findings suggest that the two nodule types have a shared evolutionary origin.


Subject(s)
Fagales/metabolism , Fagales/microbiology , Medicago truncatula/microbiology , Mutation/genetics , Nitrogen Fixation/genetics , Nitrogen Fixation/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation/genetics , Plant Root Nodulation/physiology , Root Nodules, Plant/metabolism , Root Nodules, Plant/physiology , Rosales/metabolism , Rosales/microbiology
19.
Sci Rep ; 10(1): 971, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31969628

ABSTRACT

Interactions between plants and the soil's microbial & fungal flora are crucial for the health of soil ecosystems and food production. Microbe-plant interactions are difficult to investigate in situ due to their intertwined relationship involving morphology and metabolism. Here, we describe an approach to overcome this challenge by elucidating morphology and the metabolic profile of Medicago truncatula root nodules using Magnetic Resonance (MR) Microscopy, at the highest magnetic field strength (22.3 T) currently available for imaging. A home-built solenoid RF coil with an inner diameter of 1.5 mm was used to study individual root nodules. A 3D imaging sequence with an isotropic resolution of (7 µm)3 was able to resolve individual cells, and distinguish between cells infected with rhizobia and uninfected cells. Furthermore, we studied the metabolic profile of cells in different sections of the root nodule using localised MR spectroscopy and showed that several metabolites, including betaine, asparagine/aspartate and choline, have different concentrations across nodule zones. The metabolite spatial distribution was visualised using chemical shift imaging. Finally, we describe the technical challenges and outlook towards future in vivo MR microscopy of nodules and the plant root system.


Subject(s)
Ecosystem , Medicago truncatula/metabolism , Root Nodules, Plant/metabolism , Magnetic Resonance Spectroscopy , Medicago truncatula/genetics , Microscopy , Nitrogen Fixation , Root Nodules, Plant/microbiology , Soil Microbiology
20.
New Phytol ; 225(1): 448-460, 2020 01.
Article in English | MEDLINE | ID: mdl-31596956

ABSTRACT

Arbuscular mycorrhizal (AM) fungi greatly improve mineral uptake by host plants in nutrient-depleted soil and can intracellularly colonize root cortex cells in the vast majority of higher plants. However, AM fungi possess common fungal cell wall components such as chitin that can be recognized by plant chitin receptors to trigger immune responses, raising the question as to how AM fungi effectively evade chitin-triggered immune responses during symbiosis. In this study, we characterize a secreted lysin motif (LysM) effector identified from the model AM fungal species Rhizophagus irregularis, called RiSLM. RiSLM is one of the highest expressed effector proteins in intraradical mycelium during the symbiosis. In vitro binding assays show that RiSLM binds chitin-oligosaccharides and can protect fungal cell walls from chitinases. Moreover, RiSLM efficiently interferes with chitin-triggered immune responses, such as defence gene induction and reactive oxygen species production in Medicago truncatula. Although RiSLM also binds to symbiotic (lipo)chitooligosaccharides it does not interfere significantly with symbiotic signalling in Medicago. Host-induced gene silencing of RiSLM greatly reduces fungal colonization levels. Taken together, our results reveal a key role for AM fungal LysM effectors to subvert chitin-triggered immunity in symbiosis, pointing to a common role for LysM effectors in both symbiotic and pathogenic fungi.


Subject(s)
Chitin/metabolism , Lysine/metabolism , Mycorrhizae/physiology , Plant Immunity , Symbiosis , Amino Acid Motifs , Amino Acid Sequence , Chitin/analogs & derivatives , Chitinases/metabolism , Chitosan , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Silencing , Genes, Fungal , Glomeromycota/genetics , Glomeromycota/physiology , Host-Pathogen Interactions , Mycelium/metabolism , Mycorrhizae/genetics , Oligosaccharides
SELECTION OF CITATIONS
SEARCH DETAIL
...