Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(5): 2117-2136, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36715322

ABSTRACT

The conserved complex of the Rad6 E2 ubiquitin-conjugating enzyme and the Bre1 E3 ubiquitin ligase catalyzes histone H2B monoubiquitination (H2Bub1), which regulates chromatin dynamics during transcription and other nuclear processes. Here, we report a crystal structure of Rad6 and the non-RING domain N-terminal region of Bre1, which shows an asymmetric homodimer of Bre1 contacting a conserved loop on the Rad6 'backside'. This contact is distant from the Rad6 catalytic site and is the location of mutations that impair telomeric silencing in yeast. Mutational analyses validated the importance of this contact for the Rad6-Bre1 interaction, chromatin-binding dynamics, H2Bub1 formation and gene expression. Moreover, the non-RING N-terminal region of Bre1 is sufficient to confer nucleosome binding ability to Rad6 in vitro. Interestingly, Rad6 P43L protein, an interaction interface mutant and equivalent to a cancer mutation in the human homolog, bound Bre1 5-fold more tightly than native Rad6 in vitro, but showed reduced chromatin association of Bre1 and reduced levels of H2Bub1 in vivo. These surprising observations imply conformational transitions of the Rad6-Bre1 complex during its chromatin-associated functional cycle, and reveal the differential effects of specific disease-relevant mutations on the chromatin-bound and unbound states. Overall, our study provides structural insights into Rad6-Bre1 interaction through a novel interface that is important for their biochemical and biological responses.


Subject(s)
Histones , Saccharomyces cerevisiae Proteins , Ubiquitin-Conjugating Enzymes , Humans , Chromatin/genetics , Chromatin/metabolism , Histones/genetics , Histones/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
2.
J Biol Chem ; 298(11): 102524, 2022 11.
Article in English | MEDLINE | ID: mdl-36162503

ABSTRACT

Rad6, an E2 ubiquitin-conjugating enzyme conserved from yeast to humans, functions in transcription, genome maintenance, and proteostasis. The contributions of many conserved secondary structures of Rad6 and its human homologs UBE2A and UBE2B to their biological functions are not understood. A mutant RAD6 allele with a missense substitution at alanine-126 (A126) of helix-3 that causes defects in telomeric gene silencing, DNA repair, and protein degradation was reported over 2 decades ago. Here, using a combination of genetics, biochemical, biophysical, and computational approaches, we discovered that helix-3 A126 mutations compromise the ability of Rad6 to ubiquitinate target proteins without disrupting interactions with partner E3 ubiquitin-ligases that are required for their various biological functions in vivo. Explaining the defective in vitro or in vivo ubiquitination activities, molecular dynamics simulations and NMR showed that helix-3 A126 mutations cause local disorder of the catalytic pocket of Rad6 in addition to disorganizing the global structure of the protein to decrease its stability in vivo. We also show that helix-3 A126 mutations deform the structures of UBE2A and UBE2B, the human Rad6 homologs, and compromise the in vitro ubiquitination activity and folding of UBE2B. Providing insights into their ubiquitination defects, we determined helix-3 A126 mutations impair the initial ubiquitin charging and the final discharging steps during substrate ubiquitination by Rad6. In summary, our studies reveal that the conserved helix-3 is a crucial structural constituent that controls the organization of catalytic pockets, enzymatic activities, and biological functions of the Rad6-family E2 ubiquitin-conjugating enzymes.


Subject(s)
Enzyme Stability , Saccharomyces cerevisiae Proteins , Ubiquitin-Conjugating Enzymes , Humans , Alanine/genetics , Alanine/metabolism , Mutation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL