Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 22(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557396

ABSTRACT

HIV-1 infects T cells, but the most frequent AIDS-related lymphomas are of B-cell origin. Molecular mechanisms of HIV-1-induced oncogenic transformation of B cells remain largely unknown. HIV-1 Tat protein may participate in this process by penetrating and regulating gene expression in B cells. Both immune and cancer cells can reprogram communications between extracellular signals and intracellular signaling pathways via the Akt/mTORC1 pathway, which plays a key role in the cellular response to various stimuli including viral infection. Here, we investigated the role of HIV-1 Tat on the modulation of the Akt/mTORC1 pathway in B cells. We found that HIV-1 Tat activated the Akt/mTORC1 signaling pathway; this leads to aberrant activation of activation-induced cytidine deaminase (AICDA) due to inhibition of the AICDA transcriptional repressors c-Myb and E2F8. These perturbations may ultimately lead to an increased genomic instability and proliferation that might cause B cell malignancies.


Subject(s)
B-Lymphocytes/pathology , Cytidine Deaminase/metabolism , DNA Damage , Gene Expression Regulation , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cells, Cultured , Cytidine Deaminase/genetics , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Reactive Oxygen Species/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcriptional Activation , tat Gene Products, Human Immunodeficiency Virus/genetics
2.
Front Cell Dev Biol ; 8: 606596, 2020.
Article in English | MEDLINE | ID: mdl-33324653

ABSTRACT

Proteins from the poly(ADP-ribose) polymerase (PARP) family, such as PARP1 and PARP2, use NAD+ as a substrate to catalyze the synthesis of polymeric chains consisting of ADP-ribose units covalently attached to an acceptor molecule. PARP1 and PARP2 are viewed as DNA damage sensors that, upon binding to strand breaks, poly(ADP-ribosyl)ate themselves and nuclear acceptor proteins. The flowering plant Arabidopsis thaliana contains three genes encoding homologs of mammalian PARPs: atPARP1, atPARP2, and atPARP3. Both atPARP1 and atPARP2 contain poly(ADP-ribosyl)ating activity; however, it is unknown whether they could covalently modify DNA by ADP-ribosylating the strand break termini. Here, we report that similar to their mammalian counterparts, the plant atPARP1 and atPARP2 proteins ADP-ribosylate 5'-terminal phosphate residues in duplex DNA oligonucleotides and plasmid containing at least two closely spaced DNA strand breaks. AtPARP1 preferentially catalyzes covalent attachment of ADP-ribose units to the ends of recessed DNA duplexes containing 5'-phosphate, whereas atPARP2 preferentially ADP-ribosylates the nicked and gapped DNA duplexes containing the terminal 5'-phosphate. Similar to their mammalian counterparts, the plant PARP-catalyzed DNA ADP-ribosylation is particularly sensitive to the distance that separates two strand breaks in the same DNA molecule, 1.5 and 1 or 2 turns of helix for atPARP1 and atPARP2, respectively. PAR glycohydrolase (PARG) restored native DNA structure by hydrolyzing the PAR-DNA adducts generated by atPARPs. Biochemical and mass spectrometry analyses of the PAR-DNA adducts showed that atPARPs utilize phosphorylated DNA termini as an alternative to protein acceptor residues to catalyze PAR chain synthesis via phosphodiester bond formation between C1' of ADP-ribose and a phosphate residue of the terminal nucleotide in DNA fragment. Taken together, these data establish the presence of a new type of DNA-modifying activity in Arabidopsis PARPs, suggesting a possible role of DNA ADP-ribosylation in DNA damage signaling and repair of terrestrial plants.

3.
Braz J Microbiol ; 51(1): 107-123, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31776864

ABSTRACT

The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily cellobiose, because it is the major soluble by-product of cellulose and acts as a strong inhibitor, especially for cellobiohydrolase, which plays a key role in cellulose hydrolysis. Commonly used ethanologenic yeast Saccharomyces cerevisiae is unable to utilize cellobiose; accordingly, genetic engineering efforts have been made to transfer ß-glucosidase genes enabling cellobiose utilization. Nonetheless, laboratory yeast strains have been employed for most of this research, and such strains may be difficult to use in industrial processes because of their generally weaker resistance to stressors and worse fermenting abilities. The purpose of this study was to engineer industrial yeast strains to ferment cellobiose after stable integration of tabgl1 gene that encodes a ß-glucosidase from Thermoascus aurantiacus (TaBgl1). The recombinant S. cerevisiae strains obtained in this study secrete TaBgl1, which can hydrolyze cellobiose and produce ethanol. This study clearly indicates that the extent of glycosylation of secreted TaBgl1 depends from the yeast strains used and is greatly influenced by carbon sources (cellobiose or glucose). The recombinant yeast strains showed high osmotolerance and resistance to various concentrations of ethanol and furfural and to high temperatures. Therefore, these yeast strains are suitable for ethanol production processes with saccharified lignocellulose.


Subject(s)
Fermentation , Saccharomyces cerevisiae/genetics , Thermoascus/enzymology , beta-Glucosidase/biosynthesis , Biofuels , Biomass , Genetic Engineering , Industrial Microbiology , Lignin/metabolism , Thermoascus/genetics , beta-Glucosidase/genetics
4.
PeerJ ; 6: e6029, 2018.
Article in English | MEDLINE | ID: mdl-30568855

ABSTRACT

BACKGROUND: DNA repair is essential to counteract damage to DNA induced by endo- and exogenous factors, to maintain genome stability. However, challenges to the faithful discrimination between damaged and non-damaged DNA strands do exist, such as mismatched pairs between two regular bases resulting from spontaneous deamination of 5-methylcytosine or DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved the mismatch-specific DNA glycosylases that can recognize and remove regular DNA bases in the mismatched DNA duplexes. The Escherichia coli adenine-DNA glycosylase (MutY/MicA) protects cells against oxidative stress-induced mutagenesis by removing adenine which is mispaired with 7,8-dihydro-8-oxoguanine (8oxoG) in the base excision repair pathway. However, MutY does not discriminate between template and newly synthesized DNA strands. Therefore the ability to remove A from 8oxoG•A mispair, which is generated via misincorporation of an 8-oxo-2'-deoxyguanosine-5'-triphosphate precursor during DNA replication and in which A is the template base, can induce A•T→C•G transversions. Furthermore, it has been demonstrated that human MUTYH, homologous to the bacterial MutY, might be involved in the aberrant processing of ultraviolet (UV) induced DNA damage. METHODS: Here, we investigated the role of MutY in UV-induced mutagenesis in E. coli. MutY was probed on DNA duplexes containing cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproduct (6-4PP). UV irradiation of E. coli induces Save Our Souls (SOS) response characterized by increased production of DNA repair enzymes and mutagenesis. To study the role of MutY in vivo, the mutation frequencies to rifampicin-resistant (RifR) after UV irradiation of wild type and mutant E. coli strains were measured. RESULTS: We demonstrated that MutY does not excise Adenine when it is paired with CPD and 6-4PP adducts in duplex DNA. At the same time, MutY excises Adenine in A•G and A•8oxoG mispairs. Interestingly, E. coli mutY strains, which have elevated spontaneous mutation rate, exhibited low mutational induction after UV exposure as compared to MutY-proficient strains. However, sequence analysis of RifR mutants revealed that the frequencies of C→T transitions dramatically increased after UV irradiation in both MutY-proficient and -deficient E. coli strains. DISCUSSION: These findings indicate that the bacterial MutY is not involved in the aberrant DNA repair of UV-induced DNA damage.

5.
DNA Repair (Amst) ; 48: 30-42, 2016 12.
Article in English | MEDLINE | ID: mdl-27836324

ABSTRACT

Apurinic/apyrimidinic (AP) endonucleases are important DNA repair enzymes involved in two overlapping pathways: DNA glycosylase-initiated base excision (BER) and AP endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, AP endonucleases cleave DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in NIR, the same AP endonucleases incise DNA 5' to a wide variety of oxidized bases. The flowering plant Arabidopsis thaliana contains three genes encoding homologues of major human AP endonuclease 1 (APE1): Arp, Ape1L and Ape2. It has been shown that all three proteins contain AP site cleavage and 3'-repair phosphodiesterase activities; however, it was not known whether the plant AP endonucleases contain the NIR activity. Here, we report that ARP proteins from Arabidopsis and common wheat (Triticum aestivum) contain NIR and 3'→5' exonuclease activities in addition to their AP endonuclease and 3'-repair phosphodiesterase functions. The steady-state kinetic parameters of reactions indicate that Arabidopsis ARP cleaves oligonucleotide duplexes containing α-anomeric 2'-deoxyadenosine (αdA) and 5,6-dihydrouridine (DHU) with efficiencies (kcat/KM=134 and 7.3 µM-1·min-1, respectively) comparable to those of the human counterpart. However, the ARP-catalyzed 3'-repair phosphodiesterase and 3'→5' exonuclease activities (kcat/KM=314 and 34 µM-1·min-1, respectively) were about 10-fold less efficient as compared to those of APE1. Interestingly, homozygous A. thaliana arp-/- mutant exhibited high sensitivity to methyl methanesulfonate and tert-butyl hydroperoxide, but not to H2O2, suggesting that ARP is a major plant AP endonuclease that removes abasic sites and specific types of oxidative DNA base damage. Taken together, these data establish the presence of the NIR pathway in plants and suggest its possible role in the repair of DNA damage generated by oxidative stress.


Subject(s)
Arabidopsis/enzymology , DNA Repair , Endonucleases/metabolism , Flowers/enzymology , Triticum/enzymology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA Damage , Deoxyadenosines/metabolism , Endonucleases/genetics , Flowers/drug effects , Flowers/genetics , Gene Expression , Hydrogen Peroxide/pharmacology , Hydrolysis , Kinetics , Methyl Methanesulfonate/pharmacology , Models, Molecular , Oxidative Stress , Plants, Genetically Modified , Protein Structure, Secondary , Substrate Specificity , Triticum/genetics , Uridine/analogs & derivatives , Uridine/metabolism , tert-Butylhydroperoxide/pharmacology
6.
Biochimie ; 128-129: 20-33, 2016.
Article in English | MEDLINE | ID: mdl-27343627

ABSTRACT

Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase-initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 5' to an oxidized base. The majority of characterized AP endonucleases possess classic BER activities, and approximately a half of them can also have a NIR activity. At present, the molecular mechanism underlying DNA substrate specificity of AP endonucleases remains unclear mainly due to the absence of a published structure of the enzyme in complex with a damaged base. To identify critical residues involved in the NIR function, we performed biochemical and structural characterization of Bacillus subtilis AP endonuclease ExoA and compared its crystal structure with the structures of other AP endonucleases: Escherichia coli exonuclease III (Xth), human APE1, and archaeal Mth212. We found conserved amino acid residues in the NIR-specific enzymes APE1, Mth212, and ExoA. Four of these positions were studied by means of point mutations in APE1: we applied substitution with the corresponding residue found in NIR-deficient E. coli Xth (Y128H, N174Q, G231S, and T268D). The APE1-T268D mutant showed a drastically decreased NIR activity and an inverted Mg(2+) dependence of the AP site cleavage activity, which is in line with the presence of an aspartic residue at the equivalent position among other known NIR-deficient AP endonucleases. Taken together, these data show that NIR is an evolutionarily conserved function in the Xth family of AP endonucleases.


Subject(s)
Amino Acids/genetics , Bacterial Proteins/genetics , DNA Damage , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Exodeoxyribonucleases/genetics , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites/genetics , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Humans , Kinetics , Models, Molecular , Mutation , Oligonucleotides/genetics , Oligonucleotides/metabolism , Protein Domains , Sequence Homology, Amino Acid , Substrate Specificity
7.
PLoS One ; 9(3): e92963, 2014.
Article in English | MEDLINE | ID: mdl-24667595

ABSTRACT

BACKGROUND: Apurinic/apyrimidinic (AP) endonucleases are key DNA repair enzymes involved in the base excision repair (BER) pathway. In BER, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases and/or oxidative damage. A Triticum aestivum cDNA encoding for a putative homologue of ExoIII family AP endonucleases which includes E. coli Xth, human APE1 and Arabidopsis thaliana AtApe1L has been isolated and its protein product purified and characterized. METHODOLOGY/PRINCIPAL FINDINGS: We report that the putative wheat AP endonuclease, referred here as TaApe1L, contains AP endonuclease, 3'-repair phosphodiesterase, 3'-phosphatase and 3' → 5' exonuclease activities. Surprisingly, in contrast to bacterial and human AP endonucleases, addition of Mg(2+) and Ca(2+) (5-10 mM) to the reaction mixture inhibited TaApe1L whereas the presence of Mn(2+), Co(2+) and Fe(2+) cations (0.1-1.0 mM) strongly stimulated all its DNA repair activities. Optimization of the reaction conditions revealed that the wheat enzyme requires low divalent cation concentration (0.1 mM), mildly acidic pH (6-7), low ionic strength (20 mM KCl) and has a temperature optimum at around 20 °C. The steady-state kinetic parameters of enzymatic reactions indicate that TaApe1L removes 3'-blocking sugar-phosphate and 3'-phosphate groups with good efficiency (kcat/KM = 630 and 485 µM(-1) · min(-1), respectively) but possesses a very weak AP endonuclease activity as compared to the human homologue, APE1. CONCLUSIONS/SIGNIFICANCE: Taken together, these data establish the DNA substrate specificity of the wheat AP endonuclease and suggest its possible role in the repair of DNA damage generated by endogenous and environmental factors.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Sequence Homology, Nucleic Acid , Triticum/enzymology , Triticum/genetics , Amino Acid Sequence , Biocatalysis , Cloning, Molecular , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , Escherichia coli/drug effects , Escherichia coli/enzymology , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Phosphoric Diester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Conformation , Substrate Specificity
8.
Plant Physiol Biochem ; 49(10): 1155-64, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21856164

ABSTRACT

Cereal aleurone cells are specialized endosperm cells that produce enzymes to hydrolyze the starchy endosperm during germination. Aleurone cells can undergo programmed cell death (PCD) when incubated in the presence of gibberellic acid (GA) in contrast to abscisic acid (ABA) which inhibits the process. The progression of PCD in aleurone layer cells of wheat grain is accompanied by an increase in deoxyribonuclease (DNase) activities and the internucleosomal degradation of nuclear DNA. Reactive oxygen species (ROS) are increased during PCD in the aleurone cells owing to the ß-oxidation of triglycerides and inhibition of the antioxidant enzymes possibly leading to extensive oxidative damage to DNA. ROS generate mainly non-bulky DNA base lesions which are removed in the base excision repair (BER) pathway, initiated by the DNA glycosylases. At present, very little is known about oxidative DNA damage repair in cereals. Here, we study DNA repair in the cell-free extracts of wheat aleurone layer incubated or not with phytohormones. We show, for the first time, the presence of 8-oxoguanine-DNA and ethenoadenine-DNA glycosylase activities in wheat aleurone cells. Interestingly, the DNA glycosylase and AP endonuclease activities are strongly induced in the presence of GA. Based on these data we propose that GA in addition to activation of nuclear DNases also induces the DNA repair activities which remove oxidized DNA bases in the BER pathway. Potential roles of the wheat DNA glycosylases in GA-induced oligonucleosomal fragmentation of DNA and metabolic activation of aleurone layer cells via repair of transcribed regions are discussed.


Subject(s)
DNA Repair Enzymes/metabolism , DNA Repair , Deoxyribonucleases/metabolism , Endosperm/enzymology , Triticum/enzymology , Abscisic Acid/pharmacology , Acid Anhydride Hydrolases/metabolism , Cell Death , Cytoplasm/enzymology , DNA Fragmentation , DNA, Plant/genetics , DNA, Plant/isolation & purification , Endosperm/drug effects , Endosperm/genetics , Enzyme Activation , Gibberellins/pharmacology , Glucosephosphate Dehydrogenase/metabolism , Oxidative Stress , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Triticum/drug effects , Triticum/genetics
9.
Sci Signal ; 4(161): ra10, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21343617

ABSTRACT

In response to environmental cues, cells coordinate a balance between anabolic and catabolic pathways. In eukaryotes, growth factors promote anabolic processes and stimulate cell growth, proliferation, and survival through activation of the phosphoinositide 3-kinase (PI3K)-Akt pathway. Akt-mediated phosphorylation of glycogen synthase kinase-3ß (GSK-3ß) inhibits its enzymatic activity, thereby stimulating glycogen synthesis. We show that GSK-3ß itself inhibits Akt by controlling the mammalian target of rapamycin complex 2 (mTORC2), a key activating kinase for Akt. We found that during cellular stress, GSK-3ß phosphorylated the mTORC2 component rictor at serine-1235, a modification that interfered with the binding of Akt to mTORC2. The inhibitory effect of GSK-3ß on mTORC2-Akt signaling and cell proliferation was eliminated by blocking phosphorylation of rictor at serine-1235. Thus, in response to cellular stress, GSK-3ß restrains mTORC2-Akt signaling by specifically phosphorylating rictor, thereby balancing the activities of GSK-3ß and Akt, two opposing players in glucose metabolism.


Subject(s)
Carrier Proteins/metabolism , Endoplasmic Reticulum/metabolism , Glycogen Synthase Kinase 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Stress, Physiological , Transcription Factors/metabolism , Carrier Proteins/chemistry , Enzyme Activation , Glycogen Synthase Kinase 3 beta , Humans , Phosphorylation , Rapamycin-Insensitive Companion of mTOR Protein , Serine/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL