Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
1.
medRxiv ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38883754

ABSTRACT

Cerebrovascular reactivity (CVR) reflects the ability of blood vessels to dilate or constrict in response to a vasoactive stimulus, and allows researchers to assess the brain's vascular health. Individuals with spinal cord injury (SCI) are at an increased risk for autonomic dysfunction in addition to cognitive impairments, which have been linked to a decline in CVR; however, there is currently a lack of brain-imaging studies that investigate how CVR is altered after SCI. In this study, we used a breath-holding hypercapnic stimulus and functional near-infrared spectroscopy (fNIRS) to investigate CVR alterations in individuals with SCI (n = 20, 14M, 6F, mean age = 46.3 ± 10.2 years) as compared to age- and sex-matched able-bodied (AB) controls (n = 25, 19M, 6F, mean age = 43.2 ± 12.28 years). CVR was evaluated by its amplitude and delay components separately by using principal component analysis and cross-correlation analysis, respectively. We observed significantly delayed CVR in the right inferior parietal lobe in individuals with SCI compared to AB controls (linear mixed-effects model, fixed-effects estimate = 6.565, Satterthwaite's t-test, t = 2.663, p = 0.008), while the amplitude of CVR was not significantly different. The average CVR delay in the SCI group in the right inferior parietal lobe was 14.21 s (sd: 6.60 s), and for the AB group, the average delay in the right inferior parietal lobe was 7.08 s (sd: 7.39 s). CVR delays were also associated with the duration since injury in individuals with SCI, in which a longer duration since injury was associated with a shortened delay in CVR in the right inferior parietal region (Pearson's r-correlation, r = -0.59, p = 0.04). This study shows that fNIRS can be used to quantify changes in CVR in individuals with SCI, and may be further used in rehabilitative settings to monitor the cerebrovascular health of individuals with SCI.

2.
Hum Brain Mapp ; 45(9): e26606, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38895977

ABSTRACT

Resting-state functional magnetic resonance imaging (rs-fMRI) is increasingly being used to infer the functional organization of the brain. Blood oxygen level-dependent (BOLD) features related to spontaneous neuronal activity, are yet to be clearly understood. Prior studies have hypothesized that rs-fMRI is spontaneous event-related and these events convey crucial information about the neuronal activity in estimating resting state functional connectivity (FC). Attempts have been made to extract these temporal events using a predetermined threshold. However, the thresholding methods in addition to being very sensitive to noise, may consider redundant events or exclude the low-valued inflection points. Here, we extract the event-related temporal onsets from the rs-fMRI time courses using a zero-frequency resonator (ZFR). The ZFR reflects the transient behavior of the BOLD events at its output. The conditional rate (CR) of the BOLD events occurring in a time course with respect to a seed time course is used to derive static FC. The temporal activity around the estimated events called high signal-to-noise ratio (SNR) segments are also obtained in the rs-fMRI time course and are then used to compute static and dynamic FCs during rest. Coactivation pattern (CAP) is the dynamic FC obtained using the high SNR segments driven by the ZFR. The static FC demonstrates that the ZFR-based CR distinguishes the coactivation and non-coactivation scores well in the distribution. CAP analysis demonstrated the stable and longer dwell time dominant resting state functional networks with high SNR segments driven by the ZFR. Static and dynamic FC analysis underpins that the ZFR-driven temporal onsets of BOLD events derive reliable and consistent FCs in the resting brain using a subset of the time points.


Subject(s)
Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Connectome/methods , Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Image Processing, Computer-Assisted/methods , Brain/physiology , Brain/diagnostic imaging , Male , Female , Rest/physiology , Young Adult
3.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895341

ABSTRACT

Research on brain functional connectivity often relies on intra-individual moment-to-moment correlations of functional brain activity, typically using techniques like functional MRI (fMRI). Inter-individual correlations are also employed on data from fMRI and positron emission tomography (PET). Many past studies have not specified tasks for participants, keeping them in an implicit "resting" condition. This lack of task specificity raises questions about how different tasks impact inter-individual correlation estimates. In our analysis of fMRI data from 100 unrelated participants, scanned during seven task conditions and in a resting state, we calculated Regional Homogeneity (ReHo) for each task as a regional measure of brain functions. We found that changes in ReHo due to different tasks were relatively small compared with the variations across brain regions. Cross-region variations of ReHo were highly correlated between different tasks. Similarly, whole-brain inter-individual correlation patterns were remarkably consistent across the tasks, showing correlations greater than 0.78. Changes in inter-individual correlations between tasks were primarily driven by connectivity in the visual, somatomotor, default mode network, and the interactions between them. The subtle yet statistically significant differences in functional connectivity may be linked to specific brain regions associated with the studied tasks. Future studies should consider task design when exploring inter-individual connectivity in specific brain systems.

4.
Brain Commun ; 6(3): fcae139, 2024.
Article in English | MEDLINE | ID: mdl-38715715

ABSTRACT

Delirium, memory loss, attention deficit and fatigue are frequently reported by COVID survivors, yet the neurological pathways underlying these symptoms are not well understood. To study the possible mechanisms for these long-term sequelae after COVID-19 recovery, we investigated the microstructural properties of white matter in Indian cohorts of COVID-recovered patients and healthy controls. For the cross-sectional study presented here, we recruited 44 COVID-recovered patients and 29 healthy controls in New Delhi, India. Using deterministic whole-brain tractography on the acquired diffusion MRI scans, we traced 20 white matter tracts and compared fractional anisotropy, axial, mean and radial diffusivity between the cohorts. Our results revealed statistically significant differences (PFWE < 0.01) in the uncinate fasciculus, cingulum cingulate, cingulum hippocampus and arcuate fasciculus in COVID survivors, suggesting the presence of microstructural abnormalities. Additionally, in a subsequent subgroup analysis based on infection severity (healthy control, non-hospitalized patients and hospitalized patients), we observed a correlation between tract diffusion measures and COVID-19 infection severity. Although there were significant differences between healthy controls and infected groups, we found no significant differences between hospitalized and non-hospitalized COVID patients. Notably, the identified tracts are part of the limbic system and orbitofrontal cortex, indicating microstructural differences in neural circuits associated with memory and emotion. The observed white matter alterations in the limbic system resonate strongly with the functional deficits reported in Long COVID. Overall, our study provides additional evidence that damage to the limbic system could be a neuroimaging signature of Long COVID. The findings identify targets for follow-up studies investigating the long-term physiological and psychological impact of COVID-19.

5.
J Affect Disord ; 358: 487-499, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38705527

ABSTRACT

BACKGROUND: Glaucoma, a progressive neurodegenerative disorder leading to irreversible blindness, is associated with heightened rates of generalized anxiety and depression. This study aims to comprehensively investigate brain morphological changes in glaucoma patients, extending beyond visual processing areas, and explores overlaps with morphological alterations observed in anxiety and depression. METHODS: A comparative meta-analysis was conducted, using case-control studies of brain structural integrity in glaucoma patients. We aimed to identify regions with gray matter volume (GMV) changes, examine their role within distinct large-scale networks, and assess overlap with alterations in generalized anxiety disorder (GAD) and major depressive disorder (MDD). RESULTS: Glaucoma patients exhibited significant GMV reductions in visual processing regions (lingual gyrus, thalamus). Notably, volumetric reductions extended beyond visual systems, encompassing the left putamen and insula. Behavioral and functional network decoding revealed distinct large-scale networks, implicating visual, motivational, and affective domains. The insular region, linked to pain and affective processes, displayed reductions overlapping with alterations observed in GAD. LIMITATIONS: While the study identified significant morphological alterations, the number of studies from both the glaucoma and GAD cohorts remains limited due to the lack of independent studies meeting our inclusion criteria. CONCLUSION: The study proposes a tripartite brain model for glaucoma, with visual processing changes related to the lingual gyrus and additional alterations in the putamen and insular regions tied to emotional or motivational functions. These neuroanatomical changes extend beyond the visual system, implying broader implications for brain structure and potential pathological developments, providing insights into the overall neurological consequences of glaucoma.


Subject(s)
Anxiety Disorders , Depressive Disorder, Major , Glaucoma , Gray Matter , Humans , Glaucoma/pathology , Glaucoma/physiopathology , Gray Matter/pathology , Gray Matter/diagnostic imaging , Anxiety Disorders/pathology , Anxiety Disorders/diagnostic imaging , Depressive Disorder, Major/pathology , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging , Brain/pathology , Brain/diagnostic imaging , Emotional Regulation/physiology , Case-Control Studies , Putamen/pathology , Putamen/diagnostic imaging
6.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679477

ABSTRACT

Movie watching during functional magnetic resonance imaging has emerged as a promising tool to measure the complex behavior of the brain in response to a stimulus similar to real-life situations. It has been observed that presenting a movie (sequence of events) as a stimulus will lead to a unique time course of dynamic functional connectivity related to movie stimuli that can be compared across the participants. We assume that the observed dynamic functional connectivity across subjects can be divided into following 2 components: (i) specific to a movie stimulus (depicting group-level behavior in functional connectivity) and (ii) individual-specific behavior (not necessarily common across the subjects). In this work, using the dynamic time warping distance measure, we have shown the extent of similarity between the temporal sequences of functional connectivity while the underlying movie stimuli were same and different. Further, the temporal sequence of functional connectivity patterns related to a movie is enhanced by suppressing the subject-specific components of dynamic functional connectivity using common and orthogonal basis extraction. Quantitative analysis using the F-ratio measure reveals significant differences in dynamic functional connectivity within the somatomotor network and default mode network, as well as between the occipital network and somatomotor networks.


Subject(s)
Brain , Magnetic Resonance Imaging , Motion Pictures , Humans , Magnetic Resonance Imaging/methods , Male , Female , Adult , Brain/physiology , Brain/diagnostic imaging , Brain Mapping/methods , Young Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Photic Stimulation/methods , Image Processing, Computer-Assisted/methods
7.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38586057

ABSTRACT

Resting state functional MRI (rs-fMRI) is a popular and widely used technique to explore the brain's functional organization and to examine if it is altered in neurological or mental disorders. The most common approach for its analysis targets the measurement of the synchronized fluctuations between brain regions, characterized as functional connectivity (FC), typically relying on pairwise correlations in activity across different brain regions. While hugely successful in exploring state- and disease-dependent network alterations, these statistical graph theory tools suffer from two key limitations. First, they discard useful information about the rich frequency content of the fMRI signal. The rich spectral information now achievable from advances in fast multiband acquisitions is consequently being under-utilized. Second, the analyzed FCs are phenomenological without a direct neurobiological underpinning in the underlying structures and processes in the brain. There does not currently exist a complete generative model framework for whole brain resting fMRI that is informed by its underlying biological basis in the structural connectome. Here we propose that a different approach can solve both challenges at once: the use of an appropriately realistic yet parsimonious biophysical signal generation model followed by graph spectral (i.e. eigen) decomposition. We call this model a Spectral Graph Model (SGM) for fMRI, using which we can not only quantify the structure-function relationship in individual subjects, but also condense the variable and individual-specific repertoire of fMRI signal's spectral and spatial features into a small number of biophysically-interpretable parameters. We expect this model-based inference of rs-fMRI that seamlessly integrates with structure can be used to examine state and trait characteristics of structure-function relations in a variety of brain disorders.

8.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38436465

ABSTRACT

Alzheimer's disease (AD) is associated with functional disruption in gray matter (GM) and structural damage to white matter (WM), but the relationship to functional signal in WM is unknown. We performed the functional connectivity (FC) and graph theory analysis to investigate abnormalities of WM and GM functional networks and corpus callosum among different stages of AD from a publicly available dataset. Compared to the controls, AD group showed significantly decreased FC between the deep WM functional network (WM-FN) and the splenium of corpus callosum, between the sensorimotor/occipital WM-FN and GM visual network, but increased FC between the deep WM-FN and the GM sensorimotor network. In the clinical groups, the global assortativity, modular interaction between occipital WM-FN and visual network, nodal betweenness centrality, degree centrality, and nodal clustering coefficient in WM- and GM-FNs were reduced. However, modular interaction between deep WM-FN and sensorimotor network, and participation coefficients of deep WM-FN and splenium of corpus callosum were increased. These findings revealed the abnormal integration of functional networks in different stages of AD from a novel WM-FNs perspective. The abnormalities of WM functional pathways connect downward to the corpus callosum and upward to the GM are correlated with AD.


Subject(s)
Alzheimer Disease , White Matter , Humans , Alzheimer Disease/diagnostic imaging , White Matter/diagnostic imaging , Cerebral Cortex , Corpus Callosum/diagnostic imaging , Gray Matter/diagnostic imaging
9.
Psychiatry Clin Neurosci ; 78(5): 291-299, 2024 May.
Article in English | MEDLINE | ID: mdl-38444215

ABSTRACT

AIM: The effective connectivity between the striatum and cerebral cortex has not been fully investigated in attention-deficit/hyperactivity disorder (ADHD). Our objective was to explore the interaction effects between diagnosis and age on disrupted corticostriatal effective connectivity and to represent the modulation function of altered connectivity pathways in children and adolescents with ADHD. METHODS: We performed Granger causality analysis on 300 participants from a publicly available Attention-Deficit/Hyperactivity Disorder-200 dataset. By computing the correlation coefficients between causal connections between striatal subregions and other cortical regions, we estimated the striatal inflow and outflow connection to represent intermodulation mechanisms in corticostriatal pathways. RESULTS: Interactions between diagnosis and age were detected in the superior occipital gyrus within the visual network, medial prefrontal cortex, posterior cingulate gyrus, and inferior parietal lobule within the default mode network, which is positively correlated with hyperactivity/impulsivity severity in ADHD. Main effect of diagnosis exhibited a general higher cortico-striatal causal connectivity involving default mode network, frontoparietal network and somatomotor network in ADHD compared with comparisons. Results from high-order effective connectivity exhibited a disrupted information pathway involving the default mode-striatum-somatomotor-striatum-frontoparietal networks in ADHD. CONCLUSION: The interactions detected in the visual-striatum-default mode networks pathway appears to be related to the potential distraction caused by long-term abnormal information input from the retina in ADHD. Higher causal connectivity and weakened intermodulation may indicate the pathophysiological process that distractions lead to the impairment of motion planning function and the inhibition/control of this unplanned motion signals in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Cerebral Cortex , Corpus Striatum , Magnetic Resonance Imaging , Humans , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Child , Adolescent , Male , Female , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Corpus Striatum/physiopathology , Corpus Striatum/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Connectome , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
10.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405769

ABSTRACT

Cognitive impairments have frequently been reported in individuals with spinal cord injury (SCI) across different domains such as working memory, attention, and executive function. The mechanism of cognitive impairment after SCI is not well understood due to the heterogeneity of SCI sample populations, and may possibly be due to factors such as cardiovascular dysfunction, concomitant traumatic brain injury (TBI), hypoxia, sleep disorders, and body temperature dysregulation. In this study, we implement the Neuropsychiatric Unit Cognitive Assessment Tool (NUCOG) to assess cognitive differences between individuals with SCI and age-matched able-bodied (AB) controls. We then use an N-back working memory task and functional near-infrared spectroscopy (fNIRS) to elucidate the neurovascular correlates of cognitive function in individuals with SCI. We observed significant differences between the SCI and AB groups on measures of executive function on the NUCOG test. On the N-back task, across the three levels of difficulty: 0-back, 2-back, and 3-back, no significant differences were observed between the SCI and AB group; however, both groups performed worse as the level of difficulty increased. Although there were no significant differences in N-back performance scores between the two groups, functional brain hemodynamic activity differences were observed between the SCI and AB groups, with the SCI group exhibiting higher maximum oxygenated hemoglobin concentration in the right inferior parietal lobe. These findings support the use of fNIRS to study cognitive function in individuals with SCI and may provide a useful tool during rehabilitation to obtain quantitative functional brain activity metrics.

11.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328194

ABSTRACT

Neuroimaging studies increasingly use naturalistic stimuli like video clips to trigger complex brain activations, but the complexity of such stimuli makes it difficult to assign specific functions to the resulting brain activations, particularly for higher-level content like social interactions. To address this challenge, researchers have turned to deep neural networks, e.g., convolutional neural networks (CNNs). CNNs have shown success in image recognition due to their different levels of features enabling high performance. In this study, we used pre-trained VGG-16, a popular CNN model, to analyze video data and extract hierarchical features from low-level shallow layers to high-level deeper layers, linking these activations to different levels of activation of the human brain. We hypothesized that activations in different layers of VGG-16 would be associated with different levels of brain activation and visual processing hierarchy in the brain. We were also curious about which brain regions would be associated with deeper convolutional layers in VGG-16. The study analyzed a functional MRI (fMRI) dataset where participants watched the cartoon movie Partly Cloudy. Frames of the videos were fed into VGG-16, and activation maps from different kernels and layers were extracted. Time series of the average activation patterns for each kernel were created and fed into a voxel-wise model to study brain activations. Results showed that lower convolutional layers (1st convolutional layer) were mostly associated with lower visual regions, but some kernels (6, 19, 24, 42, 55, and 58) surprisingly showed associations with activations in the posterior cingulate cortex, part of the default mode network. Deeper convolutional layers were associated with more anterior and lateral portions of the visual cortex (e.g., the lateral occipital complex) and the supramarginal gyrus. Analyzing activation features associated with different brain regions showed the promise and limitations of using CNNs to link video content to brain functions.

12.
Psychol Med ; : 1-10, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38362834

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is associated not only with disorders in multiple brain networks but also with frequency-specific brain activities. The abnormality of spatiotemporal networks in patients with MDD remains largely unclear. METHODS: We investigated the alterations of the global spatiotemporal network in MDD patients using a large-sample multicenter resting-state functional magnetic resonance imaging dataset. The spatiotemporal characteristics were measured by the variability of global signal (GS) and its correlation with local signals (GSCORR) at multiple frequency bands. The association between these indicators and clinical scores was further assessed. RESULTS: The GS fluctuations were reduced in patients with MDD across the full frequency range (0-0.1852 Hz). The GSCORR was also reduced in the MDD group, especially in the relatively higher frequency range (0.0728-0.1852 Hz). Interestingly, these indicators showed positive correlations with depressive scores in the MDD group and relative negative correlations in the control group. CONCLUSION: The GS and its spatiotemporal effects on local signals were weakened in patients with MDD, which may impair inter-regional synchronization and related functions. Patients with severe depression may use the compensatory mechanism to make up for the functional impairments.

13.
Schizophr Res ; 264: 336-344, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218019

ABSTRACT

OBJECTIVE: Schizophrenia is a serious mental disorder whose etiology remains unclear. Although numerous studies have analyzed the abnormal gray matter functional activity and whole-brain anatomical changes in schizophrenia, fMRI signal fluctuations from white matter have usually been ignored and rarely reported in the literature. METHODS: We employed 45 schizophrenia subjects and 75 healthy controls (HCs) from a publicly available fMRI dataset. By combining the voxel-mirrored homotopic connectivity (VMHC) measure and fiber tracking method, we investigated the interhemispheric functional and structural connectivity within whole brain in schizophrenia. RESULTS: Compared to HCs, patients with schizophrenia exhibited significantly reduced VMHC in the bilateral middle occipital gyrus, precentral gyrus, postcentral gyrus and corpus callosum. Fiber tracking results showed the changes in structural connectivity for the bilateral precentral gyrus, and the bilateral corpus callosum, and the fiber bundles connecting bilateral precentral gyrus and connecting the bilateral corpus callosum passed through the posterior midbody, isthmus and splenium of mid-sagittal corpus callosum, which closely related to the interhemispheric integration of visual and auditory information. More importantly, we observed a negative correlation between averaged VMHC values in the postcentral gyrus and SAPS scores, and a positive correlation between the fractional anisotropy of fiber bundle connecting the bilateral precentral gyrus and Matrix Reasoning scores in schizophrenia. CONCLUSION: Our findings provide a novel perspective of white matter functional images on understanding abnormal interhemispheric visual and auditory information transfer in schizophrenia.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Brain/diagnostic imaging , Corpus Callosum/diagnostic imaging , Cerebral Cortex , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods
14.
Hum Brain Mapp ; 45(1): e26515, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38183372

ABSTRACT

Functional magnetic resonance imaging (fMRI) has been widely used to understand the neurodevelopmental changes that occur in cognition and behavior across childhood. The blood-oxygen-level-dependent (BOLD) signal obtained from fMRI is understood to be comprised of both neuronal and vascular information. However, it is unclear whether the vascular response is altered across age in studies investigating development in children. Since the breath-hold (BH) task is commonly used to understand cerebrovascular reactivity (CVR) in fMRI studies, it can be used to account for developmental differences in vascular response. This study examines how the cerebrovascular response changes over age in a longitudinal children's BH data set from the Nathan Kline Institute (NKI) Rockland Sample (aged 6-18 years old at enrollment). A general linear model approach was applied to derive CVR from BH data. To model both the longitudinal and cross-sectional effects of age on BH response, we used mixed-effects modeling with the following terms: linear, quadratic, logarithmic, and quadratic-logarithmic, to find the best-fitting model. We observed increased BH BOLD signals in multiple networks across age, in which linear and logarithmic mixed-effects models provided the best fit with the lowest Akaike information criterion scores. This shows that the cerebrovascular response increases across development in a brain network-specific manner. Therefore, fMRI studies investigating the developmental period should account for cerebrovascular changes that occur with age.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging , Child , Humans , Adolescent , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Cerebrovascular Circulation/physiology , Oxygen , Brain/physiology
15.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38212284

ABSTRACT

Functional MRI measures the blood-oxygen-level dependent signals, which provide an indirect measure of neural activity mediated by neurovascular responses. Cerebrovascular reactivity affects both task-induced and resting-state blood-oxygen-level dependent activity and may confound inter-individual effects, such as those related to aging and biological sex. We examined a large dataset containing breath-holding, checkerboard, and resting-state tasks. We used the breath-holding task to measure cerebrovascular reactivity, used the checkerboard task to obtain task-based activations, and quantified resting-state activity with amplitude of low-frequency fluctuations and regional homogeneity. We hypothesized that cerebrovascular reactivity would be correlated with blood-oxygen-level dependent measures and that accounting for these correlations would result in better estimates of age and sex effects. We found that cerebrovascular reactivity was correlated with checkerboard task activations in the visual cortex and with amplitude of low-frequency fluctuations and regional homogeneity in widespread fronto-parietal regions, as well as regions with large vessels. We also found significant age and sex effects in cerebrovascular reactivity, some of which overlapped with those observed in amplitude of low-frequency fluctuations and regional homogeneity. However, correcting for the effects of cerebrovascular reactivity had very limited influence on the estimates of age and sex. Our results highlight the limitations of accounting for cerebrovascular reactivity with the current breath-holding task.


Subject(s)
Brain Mapping , Brain , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods , Oxygen
16.
Geroscience ; 46(1): 1-20, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37733220

ABSTRACT

Measuring differences between an individual's age and biological age with biological information from the brain have the potential to provide biomarkers of clinically relevant neurological syndromes that arise later in human life. To explore the effect of multimodal brain magnetic resonance imaging (MRI) features on the prediction of brain age, we investigated how multimodal brain imaging data improved age prediction from more imaging features of structural or functional MRI data by using partial least squares regression (PLSR) and longevity data sets (age 6-85 years). First, we found that the age-predicted values for each of these ten features ranged from high to low: cortical thickness (R = 0.866, MAE = 7.904), all seven MRI features (R = 0.8594, MAE = 8.24), four features in structural MRI (R = 0.8591, MAE = 8.24), fALFF (R = 0.853, MAE = 8.1918), gray matter volume (R = 0.8324, MAE = 8.931), three rs-fMRI feature (R = 0.7959, MAE = 9.744), mean curvature (R = 0.7784, MAE = 10.232), ReHo (R = 0.7833, MAE = 10.122), ALFF (R = 0.7517, MAE = 10.844), and surface area (R = 0.719, MAE = 11.33). In addition, the significance of the volume and size of brain MRI data in predicting age was also studied. Second, our results suggest that all multimodal imaging features, except cortical thickness, improve brain-based age prediction. Third, we found that the left hemisphere contributed more to the age prediction, that is, the left hemisphere showed a greater weight in the age prediction than the right hemisphere. Finally, we found a nonlinear relationship between the predicted age and the amount of MRI data. Combined with multimodal and lifespan brain data, our approach provides a new perspective for chronological age prediction and contributes to a better understanding of the relationship between brain disorders and aging.


Subject(s)
Longevity , Magnetic Resonance Imaging , Humans , Aged , Aged, 80 and over , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Aging , Biomarkers
17.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37943770

ABSTRACT

Empathic function, which is primarily manifested by facial imitation, is believed to play a pivotal role in interpersonal emotion regulation for mood reinstatement. To explore this association and its neural substrates, we performed a questionnaire survey (study l) to identify the relationship between empathy and interpersonal emotion regulation; and a task-mode fMRI study (study 2) to explore how facial imitation, as a fundamental component of empathic processes, promotes the interpersonal emotion regulation effect. Study 1 showed that affective empathy was positively correlated with interpersonal emotion regulation. Study 2 showed smaller negative emotions in facial imitation interpersonal emotion regulation (subjects imitated experimenter's smile while followed the interpersonal emotion regulation guidance) than in normal interpersonal emotion regulation (subjects followed the interpersonal emotion regulation guidance) and Watch conditions. Mirror neural system (e.g. inferior frontal gyrus and inferior parietal lobe) and empathy network exhibited greater activations in facial imitation interpersonal emotion regulation compared with normal interpersonal emotion regulation condition. Moreover, facial imitation interpersonal emotion regulation compared with normal interpersonal emotion regulation exhibited increased functional coupling from mirror neural system to empathic and affective networks during interpersonal emotion regulation. Furthermore, the connectivity of the right orbital inferior frontal gyrus-rolandic operculum lobe mediated the association between the accuracy of facial imitation and the interpersonal emotion regulation effect. These results show that the interpersonal emotion regulation effect can be enhanced by the target's facial imitation through increased functional coupling from mirror neural system to empathic and affective neural networks.


Subject(s)
Emotional Regulation , Humans , Brain Mapping/methods , Imitative Behavior/physiology , Magnetic Resonance Imaging/methods , Empathy , Functional Neuroimaging , Emotions/physiology , Facial Expression
18.
Psychol Med ; 54(4): 639-651, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37997708

ABSTRACT

Reward processing dysfunctions are considered a candidate mechanism underlying anhedonia and apathy in depression. Neuroimaging studies have documented that neurofunctional alterations in mesocorticolimbic circuits may neurally mediate these dysfunctions. However, common and distinct neurofunctional alterations during motivational and hedonic evaluation of monetary and natural rewards in depression have not been systematically examined. Here, we capitalized on pre-registered neuroimaging meta-analyses to (1) establish general reward-related neural alterations in depression, (2) determine common and distinct alterations during the receipt and anticipation of monetary v. natural rewards, and, (3) characterize the differences on the behavioral, network, and molecular level. The pre-registered meta-analysis (https://osf.io/ay3r9) included 633 depressed patients and 644 healthy controls and revealed generally decreased subgenual anterior cingulate cortex and striatal reactivity toward rewards in depression. Subsequent comparative analyses indicated that monetary rewards led to decreased hedonic reactivity in the right ventral caudate while natural rewards led to decreased reactivity in the bilateral putamen in depressed individuals. These regions exhibited distinguishable profiles on the behavioral, network, and molecular level. Further analyses demonstrated that the right thalamus and left putamen showed decreased activation during the anticipation of monetary reward. The present results indicate that distinguishable neurofunctional alterations may neurally mediate reward-processing alterations in depression, in particular, with respect to monetary and natural rewards. Given that natural rewards prevail in everyday life, our findings suggest that reward-type specific interventions are warranted and challenge the generalizability of experimental tasks employing monetary incentives to capture reward dysregulations in everyday life.


Subject(s)
Depression , Motivation , Humans , Depression/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging , Reward , Brain/diagnostic imaging , Brain/physiology
19.
Article in English | MEDLINE | ID: mdl-38082828

ABSTRACT

Even after recovery from the COVID-19 infection, there have been a multitude of cases reporting post-COVID neurological symptoms including memory loss, brain fog, and attention deficit. Many studies have observed localized microstructural damages in the white matter regions of COVID survivors, indicating potential damage to the axonal pathways in the brain. Therefore, in this study, we have investigated the global impact of localized damage to white matter tracts using graph theoretical analysis of the structural connectome of 45 COVID-recovered subjects and 30 Healthy Controls (HCs). We have implemented Diffusion Tensor Imaging based reconstruction followed by deterministic tractography to extract structural connections among different regions of the brain. Interpreting this structural connectivity as weighted undirected graphs, we have used graph theoretical measures like global efficiency, characteristic path length (CPL), clustering coefficient (CC), modularity, Fiedler value, and assortativity coefficient to quantify the global integration, segregation, and robustness of the brain networks. We statistically compare the cohorts based on these graph measures by employing permutation testing for 100,000 permutations. Post multiple comparisons error correction, we find that the COVID-recovered cohort shows a reduction in global efficiency and CC while they exhibit higher modularity and CPL. This disruption of the balance between global integration and segregation indicates the loss of small-world property in COVID survivors' connectomes which has been linked with other disorders such as cognitive impairment and Alzheimer's. Overall, our study sheds light on the alterations in structural connectivity and its role in post-COVID symptoms.


Subject(s)
COVID-19 , Connectome , White Matter , Humans , Connectome/methods , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , White Matter/diagnostic imaging
20.
Front Neurosci ; 17: 1248610, 2023.
Article in English | MEDLINE | ID: mdl-38027509

ABSTRACT

Introduction: The naturalistic stimuli due to its ease of operability has attracted many researchers in recent years. However, the influence of the naturalistic stimuli for whole-brain functions compared with the resting state is still unclear. Methods: In this study, we clustered gray matter (GM) and white matter (WM) masks both at the ROI- and network-levels. Functional connectivity (FC) and inter-subject functional connectivity (ISFC) were calculated in GM, WM, and between GM and WM under the movie-watching and the resting-state conditions. Furthermore, intra-class correlation coefficients (ICC) of FC and ISFC were estimated on different runs of fMRI data to denote the reliability of them during the two conditions. In addition, static and dynamic connectivity indices were calculated with Pearson correlation coefficient to demonstrate the associations between the movie-watching and the resting-state. Results: As the results, we found that the movie-watching significantly affected FC in whole-brain compared with the resting-state, but ISFC did not show significant connectivity induced by the naturalistic condition. ICC of FC and ISFC was generally higher during movie-watching compared with the resting-state, demonstrating that naturalistic stimuli could promote the reliability of connectivity. The associations between static and dynamic ISFC were weakly negative correlations in the naturalistic stimuli while there is no correlation between them under resting-state condition. Discussion: Our findings confirmed that compared to resting-state condition, the connectivity indices under the naturalistic stimuli were more reliable and stable to investigate the normal functional activities of the human brain, and might promote the applications of FC in the cerebral dysfunction in various mental disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...