Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
2.
Semin Musculoskelet Radiol ; 27(6): 601-617, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935207

ABSTRACT

Accurately identifying the peripheral pain generator in patients with chronic pain remains a major challenge for modern medicine. Millions of patients around the world suffer endlessly from difficult-to-manage debilitating pain because of very limited diagnostic tests and a paucity of pain therapies. To help these patients, we have developed a novel clinical molecular imaging approach, and, in its early stages, it has been shown to accurately identify the exact site of pain generation using an imaging biomarker for the sigma-1 receptor and positron emission tomography/magnetic resonance imaging. We hope the description of the work in this article can help others begin their own pain imaging programs at their respective institutions.


Subject(s)
Chronic Pain , Humans , Chronic Pain/diagnostic imaging , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Sigma-1 Receptor
3.
Semin Musculoskelet Radiol ; 27(6): 661-675, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935213

ABSTRACT

Chronic musculoskeletal pain is among the most highly prevalent diseases worldwide. Managing patients with chronic pain remains very challenging because current imaging techniques focus on morphological causes of pain that can be inaccurate and misleading. Moving away from anatomical constructs of disease, molecular imaging has emerged as a method to identify diseases according to their molecular, physiologic, or cellular signatures that can be applied to the variety of biomolecular changes that occur in nociception and pain processing and therefore have tremendous potential for precisely pinpointing the source of a patient's pain. Several molecular imaging approaches to image the painful process are now available, including imaging of voltage-gated sodium channels, calcium channels, hypermetabolic processes, the substance P receptor, the sigma-1 receptor, and imaging of macrophage trafficking. This article provides an overview of promising molecular imaging approaches for the imaging of musculoskeletal pain with a focus on preclinical methods.


Subject(s)
Musculoskeletal Pain , Voltage-Gated Sodium Channels , Humans
4.
Sci Rep ; 13(1): 14762, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679500

ABSTRACT

Sigma-1 Receptor has been shown to localize to sites of peripheral nerve injury and back pain. Radioligand probes have been developed to localize Sigma-1 Receptor and thus image pain source. However, in non-pain conditions, Sigma-1 Receptor expression has also been demonstrated in the central nervous system and dorsal root ganglion. This work aimed to study Sigma-1 Receptor expression in a microglial cell population in the lumbar spine following peripheral nerve injury. A publicly available transcriptomic dataset of 102,691 L4/5 mouse microglial cells from a sciatic-sural nerve spared nerve injury model and 93,027 age and sex matched cells from a sham model was used. At each of three time points-postoperative day 3, postoperative day 14, and postoperative month 5-gene expression data was recorded for both spared nerve injury and Sham cell groups. For all cells, 27,998 genes were sequenced. All cells were clustered into 12 distinct subclusters and gene set enrichment pathway analysis was performed. For both the spared nerve injury and Sham groups, Sigma-1 Receptor expression significantly decreased at each time point following surgery. At the 5-month postoperative time point, only one of twelve subclusters showed significantly increased Sigma-1 Receptor expression in spared nerve injury cells as compared to Sham cells (p = 0.0064). Pathway analysis of this cluster showed a significantly increased expression of the inflammatory response pathway in the spared nerve injury cells relative to Sham cells at the 5-month time point (p = 6.74e-05). A distinct subcluster of L4/5 microglia was identified which overexpress Sigma-1 Receptor following peripheral nerve injury consistent with neuropathic pain inflammatory response functioning. This indicates that upregulated Sigma-1 Receptor in the central nervous system characterizes post-acute peripheral nerve injury and may be further developed for clinical use in the differentiation between low back pain secondary to peripheral nerve injury and low back pain not associated with peripheral nerve injury in cases where the pain cannot be localized.


Subject(s)
Low Back Pain , Peripheral Nerve Injuries , Animals , Mice , Peripheral Nerve Injuries/genetics , Microglia , Spinal Cord , Sigma-1 Receptor
5.
Skeletal Radiol ; 51(9): 1865-1872, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35347408

ABSTRACT

OBJECTIVE: To introduce a 3D fast spin-echo (FSE) sequence technique that may replace conventional clinical 2D FSE sequences for examining the brachial plexus. MATERIALS AND METHODS: A 3D FSE sequence with motion-sensitized driven equilibrium magnitude preparation, triple-echo Dixon, and outer-volume suppression techniques, dubbed as MSDE-CUBE-fTED, was compared with clinical 2D T2-weighted and T1-weighted FSE sequences on the conventional brachial plexus exam of 14 volunteers. The resulting images were evaluated by two radiologists for fat suppression, blood flow suppression, nerve visualization, scalene muscle shape, surrounding fat planes, and diagnostic confidence. The inter-rater agreement of the reviewers was also measured. In addition, the signal magnitude ratios and contrast-to-noise ratios between nerve-to-vessel, nerve-to-muscle, and fat-to-muscle were compared. RESULTS: The MSDE-CUBE-fTED sequence scored significantly higher than the T2-weighed FSE sequence in all visualization categories (P < 0.05). Its score was not significantly different from that of the T1-weighted FSE in muscle and fat visualization (P ≥ 0.5). The inter-rater agreements were substantial (Gwet's agreement coefficient ≥ 0.7). The signal magnitude and contrast ratios were significantly higher in the MSDE-CUBE-fTED sequence (P < 0.05). CONCLUSION: Our results suggest that the MSDE-CUBE-fTED sequence can make a potential alternative to standard T2- and T1-weighted FSE sequences for examining the brachial plexus.


Subject(s)
Brachial Plexus , Imaging, Three-Dimensional , Brachial Plexus/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Motion
6.
Neuro Oncol ; 24(4): 601-609, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34487172

ABSTRACT

BACKGROUND: Non-invasive differentiation between schwannomas and neurofibromas is important for appropriate management, preoperative counseling, and surgical planning, but has proven difficult using conventional imaging. The objective of this study was to develop and evaluate machine learning approaches for differentiating peripheral schwannomas from neurofibromas. METHODS: We assembled a cohort of schwannomas and neurofibromas from 3 independent institutions and extracted high-dimensional radiomic features from gadolinium-enhanced, T1-weighted MRI using the PyRadiomics package on Quantitative Imaging Feature Pipeline. Age, sex, neurogenetic syndrome, spontaneous pain, and motor deficit were recorded. We evaluated the performance of 6 radiomics-based classifier models with and without clinical features and compared model performance against human expert evaluators. RESULTS: One hundred and seven schwannomas and 59 neurofibromas were included. The primary models included both clinical and imaging data. The accuracy of the human evaluators (0.765) did not significantly exceed the no-information rate (NIR), whereas the Support Vector Machine (0.929), Logistic Regression (0.929), and Random Forest (0.905) classifiers exceeded the NIR. Using the method of DeLong, the AUCs for the Logistic Regression (AUC = 0.923) and K Nearest Neighbor (AUC = 0.923) classifiers were significantly greater than the human evaluators (AUC = 0.766; p = 0.041). CONCLUSIONS: The radiomics-based classifiers developed here proved to be more accurate and had a higher AUC on the ROC curve than expert human evaluators. This demonstrates that radiomics using routine MRI sequences and clinical features can aid in differentiation of peripheral schwannomas and neurofibromas.


Subject(s)
Neurilemmoma , Neurofibroma , Humans , Machine Learning , Magnetic Resonance Imaging/methods , Neurilemmoma/diagnostic imaging , Neurofibroma/diagnostic imaging , Retrospective Studies
7.
Pain Med ; 23(2): 339-346, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34718774

ABSTRACT

OBJECTIVE: The goal of this study is to demonstrate the feasibility of simultaneous [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) and magnetic resonance imaging (MRI) for noninvasive visualization of muscular, neurovascular, and skin changes secondary to complex regional pain syndrome (CRPS). SUBJECTS: Seven adult patients with CRPS of the foot and seven healthy adult controls participated in our [18F]FDG PET/MRI study. METHODS: All participants received whole-body PET/MRI scans 1 hour after the injection of 370MBq [18F]FDG. Resulting PET/MRI images were reviewed by two radiologists. Metabolic and anatomic abnormalities identified, were grouped into muscular, neurovascular, and skin lesions. The [18F]FDG uptake of each lesion was compared with that of corresponding areas in controls using a Mann-Whitney U-test. RESULTS: On PET images, muscular abnormalities were found in five patients, neurovascular abnormalities in four patients, and skin abnormalities in two patients. However, on MRI images, no muscular abnormalities were detected. Neurovascular abnormalities and skin abnormalities in the affected limb were identified on MRI in one and two patients, respectively. The difference in [18F]FDG uptake between the patients and the controls was significant in muscle (P = .018) and neurovascular bundle (P = .0005). CONCLUSIONS: The increased uptake of [18F]FDG in the symptomatic areas likely reflects the increased metabolism due to the inflammatory response causing pain. Therefore, our approach combining metabolic [18F]FDG PET and anatomic MR imaging may offer noninvasive monitoring of the distribution and progression of inflammatory changes associated with CRPS.


Subject(s)
Complex Regional Pain Syndromes , Fluorodeoxyglucose F18 , Adult , Complex Regional Pain Syndromes/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Muscles , Positron-Emission Tomography/methods , Prospective Studies , Radiopharmaceuticals
8.
Sci Rep ; 11(1): 15926, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354104

ABSTRACT

A combination of magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide cisternography are typically used to locate a cerebrospinal fluid (CSF) leak. However, the site of leakage cannot be determined, making treatment more difficult. Therefore, more sensitive imaging tools are needed. A whole-body [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/MRI was conducted on six patients with suspected CSF leak and the resulting images were reviewed in comparison with those from six healthy controls. Paraspinal regions of focally increased uptake of [18F]FDG were quantified using maximum standardized uptake values (SUVmax) and compared to the SUVmax of corresponding regions in the healthy controls. All six patients with suspected CSF leak showed paraspinal regions of significantly greater [18F]FDG uptake compared to the corresponding areas in controls (P < 0.05). Two patients treated with local injections (epidural blood patches and/or epidural fibrin patches) on the site of abnormal PET/MRI findings reported temporary but significant improvement in symptoms. Our results suggest [18F]FDG PET/MRI is sensitive to abnormalities potentially due to suspected CSF leak, which are not necessarily visible on conventional MRI alone or by the standard-of-care imaging methods.


Subject(s)
Cerebrospinal Fluid Leak/diagnostic imaging , Paraspinal Muscles/diagnostic imaging , Whole Body Imaging/methods , Adult , Female , Fluorodeoxyglucose F18 , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed
9.
Neurosurgery ; 89(3): 509-517, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34131749

ABSTRACT

BACKGROUND: Clinicoradiologic differentiation between benign and malignant peripheral nerve sheath tumors (PNSTs) has important management implications. OBJECTIVE: To develop and evaluate machine-learning approaches to differentiate benign from malignant PNSTs. METHODS: We identified PNSTs treated at 3 institutions and extracted high-dimensional radiomics features from gadolinium-enhanced, T1-weighted magnetic resonance imaging (MRI) sequences. Training and test sets were selected randomly in a 70:30 ratio. A total of 900 image features were automatically extracted using the PyRadiomics package from Quantitative Imaging Feature Pipeline. Clinical data including age, sex, neurogenetic syndrome presence, spontaneous pain, and motor deficit were also incorporated. Features were selected using sparse regression analysis and retained features were further refined by gradient boost modeling to optimize the area under the curve (AUC) for diagnosis. We evaluated the performance of radiomics-based classifiers with and without clinical features and compared performance against human readers. RESULTS: A total of 95 malignant and 171 benign PNSTs were included. The final classifier model included 21 imaging and clinical features. Sensitivity, specificity, and AUC of 0.676, 0.882, and 0.845, respectively, were achieved on the test set. Using imaging and clinical features, human experts collectively achieved sensitivity, specificity, and AUC of 0.786, 0.431, and 0.624, respectively. The AUC of the classifier was statistically better than expert humans (P = .002). Expert humans were not statistically better than the no-information rate, whereas the classifier was (P = .001). CONCLUSION: Radiomics-based machine learning using routine MRI sequences and clinical features can aid in evaluation of PNSTs. Further improvement may be achieved by incorporating additional imaging sequences and clinical variables into future models.


Subject(s)
Nerve Sheath Neoplasms , Neurofibrosarcoma , Humans , Machine Learning , Magnetic Resonance Imaging , Nerve Sheath Neoplasms/diagnostic imaging , Retrospective Studies
10.
Front Pain Res (Lausanne) ; 2: 711748, 2021.
Article in English | MEDLINE | ID: mdl-35295458

ABSTRACT

Introduction: Chronic pelvic pain is a highly prevalent pain condition among women, but identifying the exact cause of pelvic pain remains a significant diagnostic challenge. In this study, we explored a new diagnostic approach with PET/MRI of the sigma-1 receptor, a chaperone protein modulating ion channels for activating nociceptive processes. Methods: Our approach is implemented by a simultaneous PET/MRI scan with a novel radioligand [18F]FTC-146, which is highly specific to the sigma-1 receptor. We recruited 5 chronic pelvic pain patients and 5 healthy volunteers and compared our PET/MRI findings between these two groups. Results: All five patients showed abnormally increased radioligand uptake on PET compared to healthy controls at various organs, including the uterus, vagina, pelvic bowel, gluteus maximus muscle, and liver. However, on MRI, only 2 patients showed abnormalities that could be potentially associated with the pain symptoms. For a subset of patients, the association of pain and the abnormally increased radioligand uptake was further validated by successful pain relief outcomes following surgery or trigger point injections to the identified abnormalities. Conclusion: In this preliminary study, sigma-1 receptor PET/MRI demonstrated potential for identifying abnormalities associated with chronic pelvic pain. Future studies will need to correlate samples with imaging findings to further validate the correlation between S1R distribution and pathologies of chronic pelvic pain. Trial Registration: The clinical trial registration date is June 2, 2018, and the registration number of the study is NCT03195270 (https://clinicaltrials.gov/ct2/show/NCT03556137).

11.
Front Pain Res (Lausanne) ; 2: 689402, 2021.
Article in English | MEDLINE | ID: mdl-35295513

ABSTRACT

Patients with persistent complex limb pain represent a substantial diagnostic challenge. Physical exam, and tests such as nerve conduction, are often normal even though the patient suffers from severe pain. In 2015, we initiated a team-based approach to evaluate such patients. The approach included physicians from several specialties (Anesthesiology/Pain Medicine, Radiology, Plastic Surgery, Neurosurgery) combined with the use of advanced imaging with Magnetic Resonance Neurography (MRN). This preliminary case series discusses MRN findings identified in patients with previously difficult-to-diagnose peripheral limb pain and describes how this combination of approaches influenced our diagnosis and treatment plans. We extracted demographics, patient characteristics, presenting features, diagnostic tests performed, treatments provided, referral diagnosis and the diagnosis after interdisciplinary team evaluation from patient charts. We evaluated MRN and electrodiagnostic studies (EDX) ability to identify injured nerves. We compared abnormal findings from these diagnostics to patient reported outcome after ultrasound-guided nerve block. A total of 58 patients, 17 males and 41 females, were identified. The majority of patients presented with lower extremity pain (75%) and had prior surgery (43%). The most commonly identified abnormality on MRN was nerve signal alteration on fluid sensitive sequences, followed by caliber change and impingement. Comparing the outcome of diagnostic nerve blocks with abnormal nerve findings on MRN or EDX, we found that MRN had a sensitivity of 67% and specificity of 100% while for EDX it was 45 and 0%, respectively. After interdisciplinary discussion and imaging review, a more specific diagnosis was produced in 78% of evaluated cases opening up additional treatment pathways such as nerve-targeted surgery, which was performed in 36% cases. This descriptive case series demonstrates that a majority of patients evaluated by our team for complex limb pain were women with lower extremity pain resulting from surgery. In addition, an interdisciplinary team evaluation and the use of the moderately sensitive but highly specific MRN imaging modality resulted in a change in diagnosis for a majority of patients with complex limb pain. Future studies investigating patient outcomes after diagnosis change are currently underway based on the findings of this preliminary study.

12.
Semin Musculoskelet Radiol ; 24(4): 441-450, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32992371

ABSTRACT

Identifying the source of a person's pain is a significant clinical challenge because the physical sensation of pain is believed to be subjective and difficult to quantify. The experience of pain is not only modulated by the individual's threshold to painful stimuli but also a product of the person's affective contributions, such as fear, anxiety, and previous experiences. Perhaps then to quantify pain is to examine the degree of nociception and pro-nociceptive inflammation, that is, the extent of cellular, chemical, and molecular changes that occur in pain-generating processes. Measuring changes in the local density of receptors, ion channels, mediators, and inflammatory/immune cells that are involved in the painful phenotype using targeted, highly sensitive, and specific positron emission tomography (PET) radiotracers is therefore a promising approach toward objectively identifying peripheral pain generators. Although several preclinical radiotracer candidates are being developed, a growing number of ongoing clinical PET imaging approaches can measure the degree of target concentration and thus serve as a readout for sites of pain generation. Further, when PET is combined with the spatial and contrast resolution afforded by magnetic resonance imaging, nuclear medicine physicians and radiologists can potentially identify pain drivers with greater accuracy and confidence. Clinical PET imaging approaches with fluorine-18 fluorodeoxyglucose, fluorine-18 sodium fluoride, and sigma-1 receptor PET radioligand and translocator protein radioligands to isolate the source of pain are described here.


Subject(s)
Musculoskeletal Pain/diagnostic imaging , Musculoskeletal Pain/etiology , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18 , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Radiopharmaceuticals
13.
Clin Plast Surg ; 47(2): 245-259, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32115050

ABSTRACT

Nerve imaging is an important component in the assessment of patients presenting with suspected peripheral nerve pathology. Although magnetic resonance neurography and ultrasound are the most commonly utilized techniques, several promising new modalities are on the horizon. Nerve imaging is useful in localizing the nerve injury, determining the severity, providing prognostic information, helping establish the diagnosis, and helping guide surgical decision making. The focus of this article is imaging of damaged nerves, focusing on nerve injuries and entrapment neuropathies.


Subject(s)
Magnetic Resonance Imaging/methods , Neuroimaging/methods , Peripheral Nerves/diagnostic imaging , Peripheral Nervous System Diseases/diagnosis , Humans
14.
Clin J Sport Med ; 30(1): e11-e14, 2020 01.
Article in English | MEDLINE | ID: mdl-30908328

ABSTRACT

A 61-year-old man presented with chronic dorsal foot pain of 9 years that worsened with ambulation. Conventional diagnostic imaging and medical workup were unrevealing, and ankle arthrodesis had been recommended by an orthopedic surgeon for pain relief. Instead, the patient participated in a clinical imaging trial designed for identifying pain generators using whole-body fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI). The scan revealed not only high 18F-FDG uptake at the site of pain, but also a hematoma and an inflamed, fibrotic, ruptured plantaris muscle. The fibrotic plantaris likely altered biomechanics with walking, explaining why symptoms worsened with activity. A simple tenotomy of the plantaris tendon was performed to decouple ankle movement from the plantaris injury, resulting in pain relief. This case illustrates the potential of whole-body 18F-FDG PET/MRI to better localize pain generators.


Subject(s)
Chronic Pain/etiology , Foot/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Tendinopathy/diagnostic imaging , Tendinopathy/surgery , Tenotomy , Whole Body Imaging , Fluorodeoxyglucose F18 , Humans , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging
15.
J Pain Res ; 11: 2353-2357, 2018.
Article in English | MEDLINE | ID: mdl-30349360

ABSTRACT

BACKGROUND: The ability to accurately diagnose and objectively localize pain generators in chronic pain sufferers remains a major clinical challenge since assessment relies on subjective patient complaints and relatively non-specific diagnostic tools. Developments in clinical molecular imaging, including advances in imaging technology and radiotracer design, have afforded the opportunity to identify tissues involved in pain generation based on their pro-nociceptive condition. The sigma-1 receptor (S1R) is a pro-nociceptive receptor upregulated in painful, inflamed tissues, and it can be imaged using the highly specific radioligand 18F-FTC-146 with PET. CASE PRESENTATION: A 50-year-old woman with a 7-year history of refractory, left-knee pain of unknown origin was referred to our pain management team. Over the past several years, she had undergone multiple treatments, including a lateral retinacular release, radiofrequency ablation of a peripheral nerve, and physical therapy. While certain treatments provided partial relief, her pain would inevitably return to its original state. Using simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) with the novel radiotracer 18F-FTC-146, imaging showed increased focal uptake of 18F-FTC-146 in the intercondylar notch, corresponding to an irregular but equivocal lesion identified in the simultaneously acquired MRI. These imaging results prompted surgical removal of the lesion, which upon resection was identified as an inflamed, intraarticular synovial lipoma. Removal of the lesion relieved the patient's pain, and to date the pain has not recurred. CONCLUSION: We present a case of chronic, debilitating knee pain that resolved with surgery following identification of the pathology with a novel clinical molecular imaging approach that detects chronic pain generators at the molecular and cellular level. This approach has the potential to identify and localize pain-associated pathology in a variety of chronic pain syndromes.

16.
J Neuroinflammation ; 15(1): 55, 2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29471880

ABSTRACT

BACKGROUND: The cystine/glutamate antiporter (xc-) has been implicated in several neurological disorders and, specifically, in multiple sclerosis (MS) as a mediator of glutamate excitotoxicity and proinflammatory immune responses. We aimed to evaluate an xc-specific positron emission tomography (PET) radiotracer, (4S)-4-(3-[18F]fluoropropyl)-L-glutamate ([18F]FSPG), for its ability to allow non-invasive monitoring of xc- activity in a mouse model of MS. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by subcutaneous injection of myelin oligodendrocyte glycoprotein (MOG35-55) peptide in complete Freund's adjuvant (CFA) followed by pertussis toxin. Control mice received CFA emulsion and pertussis toxin without MOG peptide, while a separate cohort of naïve mice received no treatment. PET studies were performed to investigate the kinetics and distribution of [18F]FSPG in naïve, control, pre-symptomatic, and symptomatic EAE mice, compared to 18F-fluorodeoxyglucose ([18F]FDG). After final PET scans, each mouse was perfused and radioactivity in dissected tissues was measured using a gamma counter. Central nervous system (CNS) tissues were further analyzed using ex vivo autoradiography or western blot. [18F]FSPG uptake in human monocytes, and T cells pre- and post-activation was investigated in vitro. RESULTS: [18F]FSPG was found to be more sensitive than [18F]FDG at detecting pathological changes in the spinal cord and brain of EAE mice. Even before clinical signs of disease, a small but significant increase in [18F]FSPG signal was observed in the spinal cord of EAE mice compared to controls. This increase in PET signal became more pronounced in symptomatic EAE mice and was confirmed by ex vivo biodistribution and autoradiography. Likewise, in the brain of symptomatic EAE mice, [18F]FSPG uptake was significantly higher than controls, with the largest changes observed in the cerebellum. Western blot analyses of CNS tissues revealed a significant correlation between light chain of xc- (xCT) protein levels, the subunit of xc- credited with its transporter activity, and [18F]FSPG-PET signal. In vitro [18F]FSPG uptake studies suggest that both activated monocytes and T cells contribute to the observed in vivo PET signal. CONCLUSION: These data highlight the promise of [18F]FSPG-PET as a technique to provide insights into neuroimmune interactions in MS and the in vivo role of xc- in the development and progression of this disease, thus warranting further investigation.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Encephalomyelitis, Autoimmune, Experimental/metabolism , Fluorine Radioisotopes/metabolism , Glutamates/metabolism , Positron-Emission Tomography/methods , Animals , Cells, Cultured , Fluorodeoxyglucose F18/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred C57BL , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/metabolism
17.
Muscle Nerve ; 57(3): 494-498, 2018 03.
Article in English | MEDLINE | ID: mdl-29211916

ABSTRACT

INTRODUCTION: Evaluation of the nerve fascicular structure can be useful in diagnosing nerve damage, but it is a very challenging task with 3T MRI because of limited resolution. In this pilot study, we present the feasibility of high-resolution 7T MRI for examining the nerve fascicular structure. METHODS: A 3-dimensional (3D) gradient-spoiled sequence was used for imaging peripheral nerves in extremities. Images acquired with different in-plane resolutions (0.42 × 0.42 mm vs. 0.12 × 0.12 mm), and different main field strengths (7T vs. 3T) were compared. RESULTS: The individual nerve fascicles were identified at 0.12 × 0.12 mm resolution in both field strengths but not at 0.42 × 0.42 mm resolution. The fascicular structure was more sharply depicted in 7T images than in 3T images. DISCUSSION: High-resolution 3D imaging with 7T MRI demonstrated feasibility for imaging nerve fascicular structures. Muscle Nerve 57: 494-498, 2018.


Subject(s)
Magnetic Resonance Imaging/methods , Peripheral Nerves/diagnostic imaging , Tibial Nerve/diagnostic imaging , Feasibility Studies , Humans , Imaging, Three-Dimensional , Pilot Projects
18.
J Nucl Med ; 59(6): 967-972, 2018 06.
Article in English | MEDLINE | ID: mdl-29097408

ABSTRACT

Chronic sciatica is a major cause of disability worldwide, but accurate diagnosis of the causative pathology remains challenging. In this report, the feasibility of an 18F-FDG PET/MRI approach for improved diagnosis of chronic sciatica is presented. Methods:18F-FDG PET/MRI was performed on 9 chronic sciatica patients and 5 healthy volunteers (healthy controls). Region-of-interest analysis using SUVmax was performed, and 18F-FDG uptake in lesions was compared with that in the corresponding areas in healthy controls. Results: Significantly increased 18F-FDG uptake was observed in detected lesions in all patients and was correlated with pain symptoms. 18F-FDG-avid lesions not only were found in impinged spinal nerves but also were associated with nonspinal causes of pain, such as facet joint degeneration, pars defect, or presumed scar neuroma. Conclusion: The feasibility of 18F-FDG PET/MRI for diagnosing pain generators in chronic sciatica was demonstrated, revealing various possible etiologies.


Subject(s)
Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Multimodal Imaging , Positron-Emission Tomography , Sciatica/diagnostic imaging , Spine/diagnostic imaging , Adult , Chronic Disease , Female , Humans , Male , Middle Aged , Pain/complications , Sciatica/complications , Young Adult
19.
Theranostics ; 7(11): 2794-2805, 2017.
Article in English | MEDLINE | ID: mdl-28824716

ABSTRACT

The ability to locate nerve injury and ensuing neuroinflammation would have tremendous clinical value for improving both the diagnosis and subsequent management of patients suffering from pain, weakness, and other neurologic phenomena associated with peripheral nerve injury. Although several non-invasive techniques exist for assessing the clinical manifestations and morphological aspects of nerve injury, they often fail to provide accurate diagnoses due to limited specificity and/or sensitivity. Herein, we describe a new imaging strategy for visualizing a molecular biomarker of nerve injury/neuroinflammation, i.e., the sigma-1 receptor (S1R), in a rat model of nerve injury and neuropathic pain. The two-fold higher increase of S1Rs was shown in the injured compared to the uninjured nerve by Western blotting analyses. With our novel S1R-selective radioligand, [18F]FTC-146 (6-(3-[18F]fluoropropyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one), and positron emission tomography-magnetic resonance imaging (PET/MRI), we could accurately locate the site of nerve injury created in the rat model. We verified the accuracy of this technique by ex vivo autoradiography and immunostaining, which demonstrated a strong correlation between accumulation of [18F]FTC-146 and S1R staining. Finally, pain relief could also be achieved by blocking S1Rs in the neuroma with local administration of non-radioactive [19F]FTC-146. In summary, [18F]FTC-146 S1R PET/MR imaging has the potential to impact how we diagnose, manage and treat patients with nerve injury, and thus warrants further investigation.


Subject(s)
Magnetic Resonance Imaging/methods , Neuralgia/diagnostic imaging , Neuralgia/pathology , Peripheral Nerves/diagnostic imaging , Peripheral Nerves/pathology , Positron-Emission Tomography/methods , Receptors, sigma/analysis , Animals , Azepines/administration & dosage , Benzothiazoles/administration & dosage , Disease Models, Animal , Fluorine Radioisotopes/administration & dosage , Isotope Labeling , Male , Neuroma/complications , Rats, Sprague-Dawley , Sigma-1 Receptor
20.
Scand J Pain ; 15: 53-57, 2017 04.
Article in English | MEDLINE | ID: mdl-28850345

ABSTRACT

BACKGROUND: Over the past couple of decades, a number of centers in the brain have been identified as important sites of nociceptive processing and are collectively known as the 'pain matrix.' Imaging tools such as functional magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) have played roles in defining these pain-relevant, physiologically active brain regions. Similarly, certain segments of the spinal cord are likely more metabolically active in the setting of pain conditions, the location of which is dependent upon location of symptoms. However, little is known about the physiologic changes in the spinal cord in the context of pain. This study aimed to determine whether uptake of 18F-FDG in the spinal cord on positron emission tomography/computed tomography (PET/CT) of patients with low back pain (LBP) differs from that of patients without LBP. METHODS: We conducted a retrospective review of 18F-FDG PET/CT scans of 26 patients with non-central nervous system cancers, 13 of whom had reported LBP and 13 of whom were free of LBP (controls). No patients had spinal stenosis or significant 18F-FDG contribution of degenerative changes of the spine into the spinal canal. Circular regions of interests were drawn within the spinal canal on transaxial images, excluding bony or discal elements of the spine, and the maximum standardized uptake value (SUVmax) of every slice from spinal nerves C1 to S1 was obtained. SUVmax were normalized by subtracting the SUVmax of spinal nerve L5, as minimal neural tissue is present at this level. Normalized SUVmax of LBP patients were compared to those of LBP-free patients at each vertebral level. RESULTS: We found the normalized SUVmax of patients with LBP to be significantly greater than those of control patients when jointly tested at spinal nerves of T7, T8, T9 and T10 (p<0.001). No significant difference was found between the two groups at other levels of the spinal cord. Within the two groups, normalized SUVmax generally decreased cephalocaudally. CONCLUSIONS: Patients with LBP show increased uptake of 18F-FDG in the caudal aspect of the thoracic spinal cord, compared to patients without LBP. IMPLICATIONS: This paper demonstrates the potential of 18F-FDG PET/CT as a biomarker of increased metabolic activity in the spinal cord related to LBP. As such, it could potentially aid in the treatment of LBP by localizing physiologically active spinal cord regions and guiding minimally invasive delivery of analgesics or stimulators to relevant levels of the spinal cord.


Subject(s)
Low Back Pain/diagnostic imaging , Low Back Pain/metabolism , Nociceptive Pain/diagnostic imaging , Nociceptive Pain/metabolism , Spinal Cord/diagnostic imaging , Spinal Cord/metabolism , Adult , Female , Fluorodeoxyglucose F18 , Humans , Male , Middle Aged , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Retrospective Studies , Spinal Nerves/diagnostic imaging , Spinal Nerves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...