Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(13): 6092-6102, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38507817

ABSTRACT

In this work, we illustrated the design and development of a metal-coordinated porous organic polymer (POP) namely VO@TPA-POP via a post-synthetic metalation strategy to incorporate oxo-vanadium sites in a pristine polymer (TPA-POP) having acetylacetonate (acac) as anchoring moiety. The as-synthesized VO@TPA-POP exhibited highly robust and porous framework, which has been utilized for thioanisole (TA) oxidation to its corresponding sulfoxide. The catalyst demonstrated notable stability and recyclability by maintaining its catalytic activity over multiple reaction cycles without any significant loss in activity. The X-ray absorption spectroscopy (XAS) and density functional theory (DFT) analysis establish the existence of V(+4) oxidation state along with the VO(O)4 active sites into the porous network and the most energetically feasible mechanistic pathway involved in the TA oxidation, respectively, indicating the role of electron density associated with vanadium center during the catalytic transformation. Thus, this work aims at the demonstration of versatility and potential of VO@TPA-POP as a porous heterogeneous catalyst for the TA oxidation followed by decontamination of sulfur mustards (HD's) to their corresponding less toxic sulfoxides in a more efficient and greener way.

2.
Adv Mater ; : e2400124, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488277

ABSTRACT

A nano-biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio-optoelectronic applications. A uniform, well-connected, high-concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer-scale continuous nano-biocomposite film without surface deformations and cracks play another major obstacle. Here we observed ultrahigh photoconductivity in DNA-MoS2 nano-biocomposite film by incorporating a high-concentration, well-percolated, and uniform MoS2 network in the ss-DNA matrix. This was achieved by utilizing DNA-MoS2 hydrogel formation, which resulted in crack-free, wafer-scale DNA-MoS2 nano-biocomposite films. Ultra-high photocurrent (5.5 mA at 1 V) with a record-high on/off ratio (1.3×106) was observed, five orders of magnitude higher than conventional biomaterials (∼101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibited ultrahigh photoresponsivity (2.6×105 A/W). Such high photoconductivity in DNA-MoS2 nano-biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications. This article is protected by copyright. All rights reserved.

3.
Nat Nanotechnol ; 19(1): 34-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37666942

ABSTRACT

Beyond-silicon technology demands ultrahigh performance field-effect transistors. Transition metal dichalcogenides provide an ideal material platform, but the device performances such as the contact resistance, on/off ratio and mobility are often limited by the presence of interfacial residues caused by transfer procedures. Here, we show an ideal residue-free transfer approach using polypropylene carbonate with a negligible residue coverage of ~0.08% for monolayer MoS2 at the centimetre scale. By incorporating a bismuth semimetal contact with an atomically clean monolayer MoS2 field-effect transistor on hexagonal boron nitride substrate, we obtain an ultralow Ohmic contact resistance of ~78 Ω µm, approaching the quantum limit, and a record-high on/off ratio of ~1011 at 15 K. Such an ultra-clean fabrication approach could be the ideal platform for high-performance electrical devices using large-area semiconducting transition metal dichalcogenides.

4.
Adv Mater ; 36(13): e2304338, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38153167

ABSTRACT

Negative capacitance gives rise to subthreshold swing (SS) below the fundamental limit by efficient modulation of surface potential in transistors. While negative-capacitance transition is reported in polycrystalline Pb(Zr0.2Ti0.8)O3 (PZT) and HfZrO2 (HZO) thin-films in few microseconds timescale, low SS is not persistent over a wide range of drain current when used instead of conventional dielectrics. In this work, the clear nano-second negative transition states in 2D single-crystal CuInP2S6 (CIPS) flakes have been demonstrated by an alternative fast-transient measurement technique. Further, integrating this ultrafast NC transition with the localized density of states of Dirac contacts and controlled charge transfer in the CIPS/channel (MoS2/graphene) a state-of-the-art device architecture, negative capacitance Dirac source drain field effect transistor (FET) is introduced. This yields an ultralow SS of 4.8 mV dec-1 with an average sub-10 SS across five decades with on-off ratio exceeding 107, by simultaneous improvement of transport and body factors in monolayer MoS2-based FET, outperforming all previous reports. This approach could pave the way to achieve ultralow-SS FETs for future high-speed and low-power electronics.

5.
Nat Commun ; 14(1): 5548, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684279

ABSTRACT

We report the emergence of dark-excitons in transition-metal-dichalcogenide (TMD) heterostructures that strongly rely on the stacking sequence, i.e., momentum-dark K-Q exciton located exclusively at the top layer of the heterostructure. The feature stems from band renormalization and is distinct from those of typical neutral excitons or trions, regardless of materials, substrates, and even homogeneous bilayers, which is further confirmed by scanning tunneling spectroscopy. To understand the unusual stacking sequence, we introduce the excitonic Elliot formula by imposing strain exclusively on the top layer that could be a consequence of the stacking process. We further find that the intensity ratio of Q- to K-excitons in the same layer is inversely proportional to laser power, unlike for conventional K-K excitons. This can be a metric for engineering the intensity of dark K-Q excitons in TMD heterostructures, which could be useful for optical power switches in solar panels.

6.
Cureus ; 15(4): e37159, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37168153

ABSTRACT

Background SARS-CoV-2 (COVID-19) created unprecedented recurrent waves of pandemic globally. Apart from COVID-19-appropriate behavior, vaccinating the population was proposed to be the most effective measure to control these outbreaks. However, the outcomes of vaccinated patients admitted to the intensive care unit (ICU) and their comparison with unvaccinated counterparts, especially in developing countries, have not been extensively studied. Materials and methods Our study examined consecutive patients with positive RT-PCR for COVID-19 admitted to the ICU from August 1, 2021, to July 31, 2022. Prior vaccination status and its relation to demographics, disease severity, mortality, and length of stay were analyzed. Results Among 436 patients admitted to the ICU, 76 (15.4%) were unvaccinated and 369 (84.6%) were vaccinated against COVID-19. Vaccinated patients were significantly older and hypertensive, and had comparatively less severity of illness than unvaccinated patients. Crude ICU and hospital mortality were significantly lower among vaccinated patients than unvaccinated patients (15.2% versus 25.4% and 16% versus 22.3%, respectively; P<0.05). Furthermore, risk-adjusted multivariate analysis demonstrated a strong but statistically nonsignificant inverse association between vaccination status and ICU mortality (odds ratio (OR)=0.540, 95% confidence interval (CI)=0.290-1.006, P=0.052). Conclusion In severe COVID-19-infected patients who required admission to the ICU, the majority were vaccinated. However, the severity of illness and hospital mortality was significantly lower among vaccinated patients with breakthrough infections.

7.
ACS Omega ; 8(1): 1677-1682, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643443

ABSTRACT

Transition-metal dichalcogenides (TMDs) are intensively studied for high-performance phototransistors. However, the device performance is limited by the single photoexcitation. Here, we show a unique strategy in which phototransistor performance can be boosted by fabricating the device on top of a distributed Bragg reflector (DBR). Monolayer molybdenum disulfide (MoS2) and tungsten disulfide (WS2) phototransistors were fabricated on DBR and SiO2 substrates for comparison. Furthermore, phototransistor performances including photocurrent, responsivity, photoinduced mobility, and subthreshold swing highlight 582 times enhancement in photoresponsivity ratio and 350 times enhancement in photocurrent ratio in the DBR sample using transparent graphene electrode and hBN encapsulation.

8.
Adv Mater ; 35(23): e2209137, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36618004

ABSTRACT

An alternative to charge-based electronics identifies the spin degree of freedom for information communication and processing. The long spin-diffusion length in graphene at room temperature demonstrates its ability for highly scalable spintronics. The development of the graphene spin valve (SV) has inspired spin devices in graphene including spin field-effect transistors and spin majority logic gates. A comprehensive picture of spin transport in graphene SVs is required for further development of spin logic. This review examines the advances in graphene SVs and their role in the development of spin logic devices. Different transport and scattering mechanisms in charge and spin are discussed. Furthermore, the on/off switching energy between graphene SVs and charge-based FETs is compared to highlight their prospects for low-power devices. The challenges and perspectives that need to be addressed for the future development of spin logic devices are then outlined.

9.
ACS Nano ; 15(2): 2849-2857, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33470093

ABSTRACT

Unusually high exciton binding energies (BEs), as much as ∼1 eV in monolayer transition-metal dichalcogenides, provide opportunities for exploring exotic and stable excitonic many-body effects. These include many-body neutral excitons, trions, biexcitons, and defect-induced excitons at room temperature, rarely realized in bulk materials. Nevertheless, the defect-induced trions correlated with charge screening have never been observed, and the corresponding BEs remain unknown. Here we report defect-induced A-trions and B-trions in monolayer tungsten disulfide (WS2) via carrier screening engineering with photogenerated carrier modulation, external doping, and substrate scattering. Defect-induced trions strongly couple with inherent SiO2 hole traps under high photocarrier densities and become more prominent in rhenium-doped WS2. The absence of defect-induced trion peaks was confirmed using a trap-free hexagonal boron nitride substrate, regardless of power density. Moreover, many-body excitonic charge states and their BEs were compared via carrier screening engineering at room temperature. The highest BE was observed in the defect-induced A-trion state (∼214 meV), comparably higher than the trion (209 meV) and neutral exciton (174 meV), and further tuned by external photoinduced carrier density control. This investigation allows us to demonstrate defect-induced trion BE localization via spatial BE mapping in the monolayer WS2 midflake regions distinctive from the flake edges.

10.
Beilstein J Nanotechnol ; 11: 782-797, 2020.
Article in English | MEDLINE | ID: mdl-32509492

ABSTRACT

Phonon dynamics is explored in mechanically exfoliated two-dimensional WSe2 using temperature-dependent and laser-power-dependent Raman and photoluminescence (PL) spectroscopy. From this analysis, phonon lifetime in the Raman active modes and phonon concentration, as correlated to the energy parameter E 0, were calculated as a function of the laser power, P, and substrate temperature, T. For monolayer WSe2, from the power dependence it was determined that the phonon lifetime for the in-plane vibrational mode was twice that of the out-of-plane vibrational mode for P in the range from 0.308 mW up to 3.35 mW. On the other hand, the corresponding relationship for the temperature analysis showed that the phonon lifetime for the in-plane vibrational mode lies within 1.42× to 1.90× that of the out-of-plane vibrational mode over T = 79 K up to 523 K. To provide energy from external stimuli, as T and P were increased, peak broadening in the PL spectra of the A-exciton was observed. From this, a phonon concentration was tabulated using the Urbach formulism, which increased with increasing T and P; consequently, the phonon lifetime was found to decrease. Although phonon lifetime decreased with increasing temperature for all thicknesses, the decay rate in the phonon lifetime in the monolayer (1L) material was found to be 2× lower compared to the bulk. We invoke a harmonic oscillator model to explain the damping mechanism in WSe2. From this it was determined that the damping coefficient increases with the number of layers. The work reported here sheds fundamental insights into the evolution of phonon dynamics in WSe2 and should help pave the way for designing high-performance electronic, optoelectronic and thermoelectric devices in the future.

11.
ACS Appl Mater Interfaces ; 11(1): 880-888, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30560653

ABSTRACT

Photovoltaic device performance of graphene/n-Si Schottky diodes is largely affected by inhomogeneous oxide formation at the interface that suppresses the tunneling current of injected and photoexcited charges. The accumulated trap charges at low current induce charge recombination at the interface and degrade the ideality factor of the diode and the fill factor (FF) of the solar cell. This consequently gives rise to a nonlinear current-voltage ( I- V) feature in solar cells, commonly known as an S-shaped kink, which can be engineered by optimizing the interface barrier thickness or by increasing the carrier mobility. Here, we present chemical and electrochemical doping methods to increase the conductivity of graphene that transforms nonlinear kink photodiodes with a low FF and solar cell efficiency towards trap-free linear photovoltaic I- V. Space-charge-limited-current manifested Ohmic I- V diode behavior with enhanced conductance in graphene by injecting homogeneous ionic liquid; confirming the significant reduction of trap charge density. This was further congruent with the disappearance of the nonlinear kink in photodiodes with a high FF and nearly ideal diodes. The solar cell efficiency obtained with our strategy is around 13.6% and suggests possibilities to reach the theoretical limit of 19% by tailoring parameters such as conductance of graphene, carrier density of Si, and oxidation of the interfaces.

12.
Sci Rep ; 8(1): 10259, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29980765

ABSTRACT

A traditional transparent conducting film (TCF) such as indium tin oxide (ITO) exhibits poor mechanical flexibility and inconsistent transmittance throughout the UV-VIS-NIR spectrum. Recent TCFs like graphene films exhibit high sheet resistance (Rs) due to defect induced carrier scattering. Here we show a unique hybrid chemical doping method that results in high transmittance uniformity in a layered graphene-polymer nanocomposite with suppressed defect-induced carrier scattering. This layer-by-layer hybrid chemical doping results in low Rs (15 Ω/sq at >90% transmittance) and 3.6% transmittance uniformity (300-1000 nm) compared with graphene (17%), polymer (8%) and ITO (46%) films. The weak localization effect in our nanocomposite was reduced to 0.5%, compared with pristine (4.25%) and doped graphene films (1.2%). Furthermore, negligible Rs change (1.2 times compared to 12.6 × 103 times in ITO) and nearly unaltered transmittance spectra were observed up to 24 GPa of applied stress highlighting mechanical flexibility of the nanocomposite film.

13.
Sci Rep ; 6: 37857, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27886274

ABSTRACT

Silicon based metal-semiconductor-metal (MSM) photodetectors have faster photogeneration and carrier collection across the metal-semiconductor Schottky contacts, and CMOS integratibility compared to conventional p-n junction photodetectors. However, its operations are limited by low photogeneration, inefficient carrier-separation, and low mobility. Here, we show a simple and highly effective approach for boosting Si MSM photodetector efficiency by uniformly decorating semiconducting CdSe quantum dots on Si channel (Si-QD). Significantly higher photocurrent on/off ratio was achieved up to over 500 compared to conventional Si MSM photodetector (on/off ratio ~5) by increasing photogeneration and improving carrier separation. Furthermore, a substrate-biasing technique invoked wide range of tunable photocurrent on/off ratio in Si-QD photodetector (ranging from 2.7 to 562) by applying suitable combinations of source-drain and substrate biasing conditions. Strong photogeneration and carrier separation were achieved by employing Stark effect into the Si-QD hybrid system. These results highlight a promising method for enhancing Si MSM photodetector efficiency more than 100 times and simultaneously compatible with current silicon technologies.


Subject(s)
Quantum Dots/chemistry , Silicon/chemistry , Equipment Design , Optical Devices , Semiconductors
14.
Nanotechnology ; 27(48): 485602, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27805909

ABSTRACT

Stable ink dispersions of two-dimensional-layered-materials (2DLMs) MoS2 and graphite are successfully obtained in organic solvents exhibiting a wide range of polarities and surface energies. The role of sonication time, ink viscosity and surface tension is explored in the context of dispersion stability using these solvents, which include N-methyl-2-pyrrolidone (NMP), N,N-Dimethylacetamide (DMA), dimethylformamide (DMF), Cyclohexanone (C), as well as less-toxic and more environmentally friendly Isopropanol (IPA) and Terpineol (T). The ink viscosity is engineered through the addition of Ethyl-Cellulose (EC) which has been shown to optimize the jettability of the dispersions. In contrast to prior work, the addition of EC after sonication-instead of prior to it-is noted to be effective in generating a high-density dispersion, yielding a uniform film morphology. High-quality inks are obtained using C/T and NMP as solvents for MoS2 and graphite, respectively, as gauged through optical absorption spectroscopy. Electronic transport data on the solution-cast inks is gathered at room temperature. Arrays of 2D graphite-rod based inks are printed on rigid Si, as well as flexible and transparent polyethylene terephthalate (PET) substrates. The results clearly show the promise of ink-jet printing for casting 2DLMs into hierarchically assembled structures over a range of substrates for flexible and printed-electronics applications.

15.
Nanoscale ; 8(44): 18710-18717, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27786321

ABSTRACT

While optical properties of graphene in the visible region are solely defined by the frequency-independent fine structure constant, an onset of absorption has been observed in the infrared region due to Pauli blocking of interband transitions. Here, we report a complete absorption quenching in the infrared region by coating graphene with bis(trifluoromethanesulfonyl)amine (TFSA), an optically transparent p-type chemical dopant. The Fermi level downshift due to TFSA doping results in enhanced transmission in the infrared region proportional to the doping concentration. An absorption quenching onset method, developed in our work, to extract the Fermi level shift in pristine and doped graphene agrees with values extracted from Raman G-band and 2D-band shifts, Hall measurements and the binding energy shift observed in X-ray photo-electron spectroscopy. Performing simple UV-visible transmittance spectroscopy to obtain the absorption quenching onset of graphene also allows detection of environmental and substrate effects via Fermi level shift. Our method opens up the practical implementation of this unique phenomenon of graphene in future optoelectronic devices.

16.
Nano Lett ; 15(8): 4948-54, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26146797

ABSTRACT

Large scale, cost-effective processing of metal oxide thin films is critical for the fabrication of many novel thin film electronics. To date, however, most of the reported solution-based techniques require either extended thermal anneals or additional synthetic steps. Here we report mist chemical vapor deposition as a solution-based, readily scalable, and open-air method to produce high-quality polycrystalline metal oxide thin films. Continuous, smooth, and conformal deposition of metal oxide thin films is achieved by tuning the solvent chemistry of Leidenfrost droplets to promote finer control over the surface-local dissociation process of the atomized zinc-bearing precursors. We demonstrate the deposited ZnO as highly efficient electron transport layers for inverted polymer solar cells to show the power of the approach. A highest efficiency of 8.7% is achieved with a fill factor of 73%, comparable to that of conventional so-gel ZnO, which serves as an indication of the efficient vertical transport and electron collection achievable using this material.

17.
Nanoscale ; 6(6): 3410-7, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24531922

ABSTRACT

We investigate charge transport in a chemically reduced graphene oxide (RGO) film of sub-micron thickness. The I-V curve of RGO film shows current switching of the order of ∼10(5) above the threshold voltage. We found that the observed I-V curve is consistent with quantum tunnelling based charge transport. The quantum tunnelling based Simmons generalized theory was used to interpret the charge transport mechanism which shows that the current switching phenomenon is associated with transition from direct to Fowler-Nordheim (F-N) tunneling. The absence of current switching in the I-V curve after stripping away the oxygen functional groups from chemically RGO film confirms that the presence of these groups and reduced interaction between adjacent layers of RGO play a key role in charge transport. Such metal-based current switching devices may find applications in graphene-based electronic devices such as high voltage resistive switching devices.

18.
ACS Nano ; 5(12): 9817-23, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22040293

ABSTRACT

Semiconductors with higher carrier mobility and carrier density are required to fabricate a p-n junction diode for high-speed device operation and high-frequency signal processing. Here, we use a chemically doped semiconducting single-walled carbon nanotube (SWCNT) random network for a field effect transistor (FET) and demonstrate a rectifier operated at a wide range of frequencies by fabricating a p-n junction diode. The p-n diode was fabricated by using a pristine p-type SWCNT-FET where half was covered by SiO(2) and the other half was chemically doped by using benzyl viologen molecules, which was converted into an n-type channel. The half-wave rectifier of the random network SWCNT p-n junction diode clearly highlights the device operation under high input signal frequencies up to 10 MHz with very low output distortion, which a commercial silicon p-n junction diode cannot access. These results indicate that the random network SWCNT p-n junction diodes can be used as building blocks of complex circuits in a range of applications in microelectronics, optoelectronics, sensors, and other systems.


Subject(s)
Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Semiconductors , Equipment Design , Equipment Failure Analysis , Particle Size
19.
Nano Lett ; 11(11): 4682-7, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-21972980

ABSTRACT

Persistent photoconductance, a prolonged light-induced conducting behavior that lasts several hundred seconds, has been observed in semiconductors. Here we report persistent negative photoconductance and consecutive prominent persistent positive photoconductance in graphene. Unusually large yields of negative PC (34%) and positive PC (1652%) and remarkably long negative transient response time (several hours) were observed. Such high yields were reduced in multilayer graphene and were quenched under vacuum conditions. Two-dimensional metallic graphene strongly interacts with environment and/or substrate, causing this phenomenon, which is markedly different from that in three-dimensional semiconductors and nanoparticles.


Subject(s)
Graphite/chemistry , Graphite/radiation effects , Nanostructures/chemistry , Nanostructures/radiation effects , Electric Conductivity , Light , Materials Testing , Radiation Dosage
20.
ACS Nano ; 4(8): 4595-600, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20731442

ABSTRACT

We propose a new method of layer-by-layer (LbL) doping of thin graphene films. Large area monolayer graphene was synthesized on Cu foil by using the chemical vapor deposition method. Each layer was transferred on a polyethylene terephthalate substrate followed by a salt-solution casting, where the whole process was repeated several times to get LbL-doped thin layers. With this method, sheet resistance was significantly decreased up to approximately 80% with little sacrifice in transmittance. Unlike samples fabricated by topmost layer doping, our sample shows better environmental stability due to the presence of dominant neutral Au atoms on the surface which was confirmed by angle-resolved X-ray photoelectron spectroscopy. The sheet resistance of the LbL-doped four-layer graphene (11 x 11 cm(2)) was 54 Omega/sq at 85% transmittance, which meets the technical target for industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...