Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Fluoresc ; 31(5): 1401-1407, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34224042

ABSTRACT

Dehydroergosterol (DHE, Δ5,7,9(11),22-ergostatetraen-3ß-ol) is a naturally occurring fluorescent analog of cholesterol found in yeast. Since DHE has been shown to faithfully mimic cholesterol in a large number of biophysical, biochemical, and cell biological studies, it is widely used to explore cholesterol organization, dynamics and trafficking in model and biological membranes. In this work, we show that DHE, in spite of its localization at the membrane interface, does not exhibit red edge excitation shift (REES) in model membranes, irrespective of the membrane phase. These results are reinforced by semi-empirical quantum chemical calculations of dipole moment changes of DHE in ground and excited states, which show a very small change in the dipole moment of DHE upon excitation. We conclude that DHE fluorescence exhibits lack of environmental sensitivity, despite its usefulness in monitoring cholesterol organization, dynamics and traffic in model and biological membranes.


Subject(s)
Cholesterol , Cell Membrane , Fluorescence , Lipid Bilayers
2.
Langmuir ; 27(8): 4857-66, 2011 Apr 19.
Article in English | MEDLINE | ID: mdl-21417351

ABSTRACT

Adsorption of pulmonary surfactant to an air-water interface lowers surface tension (γ) at rates that initially decrease progressively, but which then accelerate close to the equilibrium γ. The studies here tested a series of hypotheses concerning mechanisms that might cause the late accelerated drop in γ. Experiments used captive bubbles and a Wilhelmy plate to measure γ during adsorption of vesicles containing constituents from extracted calf surfactant. The faster fall in γ reflects faster adsorption rather than any feature of the equation of state that relates γ to surface concentration (Γ). Adsorption accelerates when γ reaches a critical value rather than after an interval required to reach that γ. The hydrophobic surfactant proteins (SPs) represent key constituents, both for reaching the γ at which the acceleration occurs and for producing the acceleration itself. The γ at which rates of adsorption increase, however, is unaffected by the Γ of protein in the films. In the absence of the proteins, a phosphatidylethanolamine, which, like the SPs, induces fusion of the vesicles with the interfacial film, also causes adsorption to accelerate. Our results suggest that the late acceleration is characteristic of adsorption by fusion of vesicles with the nascent film, which proceeds more favorably when the Γ of the lipids exceeds a critical value.


Subject(s)
Pulmonary Surfactants/chemistry , Surface Tension , Adsorption , Animals , Cattle , Kinetics , Membrane Fusion , Proteins
3.
Biophys J ; 98(8): 1549-57, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20409474

ABSTRACT

The hydrophobic surfactant proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface. Previous evidence suggests that they achieve this effect by facilitating the formation of a rate-limiting negatively curved stalk between the vesicular bilayer and the interface. To determine whether the proteins can alter the curvature of lipid leaflets, we used x-ray diffraction to investigate how the physiological mixture of these proteins affects structures formed by 1-palmitoyl-2-oleoyl phosphatidylethanolamine, which by itself undergoes the lamellar-to-inverse hexagonal phase transition at 71 degrees C. In amounts as low as 0.03% (w:w) and at temperatures as low as 57 degrees C, the proteins induce formation of bicontinuous inverse cubic phases. The proteins produce a dose-related shift of diffracted intensity to the cubic phases, with minimal evidence of other structures above 0.1% and 62 degrees C, but no change in the lattice-constants of the lamellar or cubic phases. The induction of the bicontinuous cubic phases, in which the individual lipid leaflets have the same saddle-shaped curvature as the hypothetical stalk-intermediate, supports the proposed model of how the surfactant proteins promote adsorption.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Phosphatidylethanolamines/chemistry , Pulmonary Surfactant-Associated Protein B/pharmacology , Pulmonary Surfactant-Associated Protein C/pharmacology , Animals , Cattle , Temperature , X-Ray Diffraction
4.
Respir Physiol Neurobiol ; 163(1-3): 244-55, 2008 Nov 30.
Article in English | MEDLINE | ID: mdl-18632313

ABSTRACT

Pulmonary surfactant lowers surface tension in the lungs. Physiological studies indicate two key aspects of this function: that the surfactant film forms rapidly; and that when compressed by the shrinking alveolar area during exhalation, the film reduces surface tension to very low values. These observations suggest that surfactant vesicles adsorb quickly, and that during compression, the adsorbed film resists the tendency to collapse from the interface to form a 3D bulk phase. Available evidence suggests that adsorption occurs by way of a rate-limiting structure that bridges the gap between the vesicle and the interface, and that the adsorbed film avoids collapse by undergoing a process of solidification. Current models, although incomplete, suggest mechanisms that would partially explain both rapid adsorption and resistance to collapse as well as how different constituents of pulmonary surfactant might affect its behavior.


Subject(s)
Biophysical Phenomena , Pulmonary Surfactants/chemistry , Pulmonary Surfactants/metabolism , Animals , Humans , Surface Tension
5.
Biophys J ; 93(12): 4237-43, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17720730

ABSTRACT

To determine if hydrophobic surfactant proteins affect the stability of pulmonary surfactant monolayers at an air/water interface, the studies reported here compared the kinetics of collapse for the complete set of lipids in calf surfactant with and without the proteins. Monomolecular films spread at the surface of captive bubbles were compressed at 37 degrees C to surface pressures above 46 mN/m, at which collapse first occurred. The rate of area-compression required to maintain a constant surface pressure was measured to directly determine the rate of collapse. For films with and without the proteins, higher surface pressures initially produced faster collapse, but the rates then reached a maximum and decreased to values <0.04 min(-1) above 53 mN/m. The maximum rate for the lipids with the proteins (1.22 +/- 0.28 min(-1)) was almost twice the value for the lipids alone (0.71 +/- 0.15 min(-1)). Because small increments in surface pressure produced large shifts in the rate close to the fastest collapse, compressions at a series of constant speeds also established the threshold rate required to achieve high surface pressure as an indirect indication of the fastest collapse. Both samples produced a sharply defined threshold that occurred at slightly faster compression with the proteins present, supporting the conclusion of the direct measurements that the proteins produce a faster maximum rate of collapse. Our results indicate that at 47-53 mN/m, the hydrophobic surfactant proteins destabilize the compressed monolayers and tend to limit access to the higher surface pressures at which the lipid films become metastable.


Subject(s)
Membranes, Artificial , Phospholipids/chemistry , Pulmonary Surfactant-Associated Proteins/chemistry , Pulmonary Surfactants/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Conformation , Phase Transition , Surface Properties
6.
J Appl Physiol (1985) ; 102(5): 1739-45, 2007 May.
Article in English | MEDLINE | ID: mdl-17194731

ABSTRACT

Monomolecular films of phospholipids in the liquid-expanded (LE) phase after supercompression to high surface pressures (pi), well above the equilibrium surface pressure (pi(e)) at which fluid films collapse from the interface to form a three-dimensional bulk phase, and in the tilted-condensed (TC) phase both replicate the resistance to collapse that is characteristic of alveolar films in the lungs. To provide the basis for determining which film is present in the alveolus, we measured the melting characteristics of monolayers containing TC dipalmitoyl phosphatidylcholine (DPPC), as well as supercompressed 1-palmitoyl-2-oleoyl phosphatidylcholine and calf lung surfactant extract (CLSE). Films generated by appropriate manipulations on a captive bubble were heated from < or =27 degrees C to > or =60 degrees C at different constant pi above pi(e). DPPC showed the abrupt expansion expected for the TC-LE phase transition, followed by the contraction produced by collapse. Supercompressed CLSE showed no evidence of the TC-LE expansion, arguing that supercompression did not simply convert the mixed lipid film to TC DPPC. For both DPPC and CLSE, the melting point, taken as the temperature at which collapse began, increased at higher pi, in contrast to 1-palmitoyl-2-oleoyl phosphatidylcholine, for which higher pi produced collapse at lower temperatures. For pi between 50 and 65 mN/m, DPPC melted at 48-55 degrees C, well above the main transition for bilayers at 41 degrees C. At each pi, CLSE melted at temperatures >10 degrees C lower. The distinct melting points for TC DPPC and supercompressed CLSE provide the basis by which the nature of the alveolar film might be determined from the temperature-dependence of pulmonary mechanics.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Biological Products/chemistry , Phosphatidylcholines/chemistry , Pulmonary Alveoli/physiology , Pulmonary Surfactants/chemistry , Respiratory Mechanics , Transition Temperature , 1,2-Dipalmitoylphosphatidylcholine/physiology , Animals , Biological Products/physiology , Biomechanical Phenomena , Cattle , Elasticity , Hydrostatic Pressure , Microbubbles , Models, Biological , Molecular Conformation , Phase Transition , Phosphatidylcholines/physiology , Pulmonary Alveoli/chemistry , Pulmonary Surfactants/metabolism , Surface Properties , Time Factors
7.
Biophys J ; 92(2): 493-501, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17056729

ABSTRACT

To determine how the hydrophobic surfactant proteins promote insertion of the surfactant lipids into an air/water interface, we measured the effect of lysophosphatidylcholine (LPC) on adsorption. Existing models contend that the proteins function either by disordering the lipids or by stabilizing a negatively curved structure located between the adsorbing vesicle and the interface. Because LPC produces greater disorder but positive curvature, the models predict opposite effects. With vesicles containing either dioleoyl phosphatidylcholine (DOPC) or the neutral and phospholipids isolated from calf surfactant, LPC increased the initial rate at which surface tension fell. The final surface tension, however, remained well above the value of approximately 25 mN/m expected for a saturated surface. With two preparations, dioleoyl phosphatidylethanolamine and gramicidin A-DOPC, which form the negatively curved hexagonal-II (H(II)) phase and adsorb rapidly, LPC instead had little effect on initial adsorption but delayed the fall of surface tension below approximately 30 mN/m. LPC produced a similar inhibition of the late adsorption for extracted calf surfactant. Unlike dioleoyl phosphatidylethanolamine and gramicidin A-DOPC, small-angle x-ray scattering and (31)P-nuclear magnetic resonance for extracted calf surfactant detected no evidence for the H(II) phase. Our results indicate that although LPC can promote the initial adsorption of vesicles containing only lamellar lipids, it inhibits the facilitation by the hydrophobic proteins of late adsorption. Our findings support a model in which the surfactant proteins accelerate adsorption by producing a focal tendency to stabilize a negatively curved kinetic intermediate without a general shift to the H(II) phase.


Subject(s)
Air , Liposomes/chemistry , Lysophosphatidylcholines/chemistry , Membrane Fluidity , Models, Chemical , Models, Molecular , Phospholipids/chemistry , Water/chemistry , Adsorption , Surface Properties
8.
Integr Comp Biol ; 47(4): 610-27, 2007 Oct.
Article in English | MEDLINE | ID: mdl-21672866

ABSTRACT

(Orgeig and Daniels) This surfactant symposium reflects the integrative and multidisciplinary aims of the 1st ICRB, by encompassing in vitro and in vivo research, studies of vertebrates and invertebrates, and research across multiple disciplines. We explore the physical and structural challenges that face gas exchange surfaces in vertebrates and insects, by focusing on the role of the surfactant system. Pulmonary surfactant is a complex mixture of lipids and proteins that lines the air-liquid interface of the lungs of all air-breathing vertebrates, where it functions to vary surface tension with changing lung volume. We begin with a discussion of the extraordinary conservation of the blood-gas barrier among vertebrate respiratory organs, which has evolved to be extremely thin, thereby maximizing gas exchange, but simultaneously strong enough to withstand significant distension forces. The principal components of pulmonary surfactant are highly conserved, with a mixed phospholipid and neutral lipid interfacial film that is established, maintained and dynamically regulated by surfactant proteins (SP). A wide variation in the concentrations of individual components exists, however, and highlights lipidomic as well as proteomic adaptations to different physiological needs. As SP-B deficiency in mammals is lethal, oxidative stress to SP-B is detrimental to the biophysical function of pulmonary surfactant and SP-B is evolutionarily conserved across the vertebrates. It is likely that SP-B was essential for the evolutionary origin of pulmonary surfactant. We discuss three specific issues of the surfactant system to illustrate the diversity of function in animal respiratory structures. (1) Temperature: In vitro analyses of the behavior of different model surfactant films under dynamic conditions of surface tension and temperature suggest that, contrary to previous beliefs, the alveolar film may not have to be substantially enriched in the disaturated phospholipid, dipalmitoylphosphatidylcholine (DPPC), but that similar properties of rate of film formation can be achieved with more fluid films. Using an in vivo model of temperature change, a mammal that enters torpor, we show that film structure and function varies between surfactants isolated from torpid and active animals. (2) Spheres versus tubes: Surfactant is essential for lung stabilization in vertebrates, but its function is not restricted to the spherical alveolus. Instead, surfactant is also important in narrow tubular respiratory structures such as the terminal airways of mammals and the air capillaries of birds. (3). Insect tracheoles: We investigate the structure and function of the insect tracheal system and ask whether pulmonary surfactant also has a role in stabilizing these minute tubules. Our theoretical analysis suggests that a surfactant system may be required, in order to cope with surface tension during processes, such as molting, when the tracheae collapse and fill with water. Hence, despite observations by Wigglesworth in the 1930s of fluid-filled tracheoles, the challenge persists into the 21st century to determine whether this fluid is associated with a pulmonary-type surfactant system. Finally, we summarize the current status of the field and provide ideas for future research.

9.
Colloids Surf B Biointerfaces ; 53(2): 167-74, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17045466

ABSTRACT

To understand the role of the puroindolines (PIN-a and PIN-b) in the defense mechanism and stabilization of lipid films in the gas cell of bread dough, we have isolated the proteins and lipids from wheat seed endosperm and studied their interaction at the air/water interface using a Langmuir trough. The nature and shape of the pressure-area compression isotherms of the lipid monolayer in the presence of puroindolines in the subphase depended on the concentration of protein. A distinct phase separation occurred, when the concentration of protein in the subphase increased. The interfacial elasticity of the lipid monolayer in the presence of puroindolines in the subphase was higher than the pure lipid. Injection of protein beneath the preexisting lipid monolayer resulted in the increase of surface pressure due to the penetration of proteins. The extent of penetration depended on the nature of lipid head groups as well as on the initial surface pressure. The penetration of puroindolines to lipid monolayer was observed to be zero after crossing a critical initial surface pressure. The magnitude of the critical initial surface pressure for anionic lipids was significantly higher than the zwitterionic and nonionic lipids. The experimental results showed that both PIN-a and PIN-b had more affinity for anionic polar lipids than the neutral polar lipids and stabilized the lipid monolayer.


Subject(s)
Air , Lipids/chemistry , Plant Proteins/metabolism , Seeds/chemistry , Triticum/chemistry , Water/chemistry , Chromatography, High Pressure Liquid , Kinetics , Plant Proteins/chemistry , Pressure , Surface Properties
10.
Biochim Biophys Acta ; 1717(1): 41-9, 2005 Nov 10.
Article in English | MEDLINE | ID: mdl-16242116

ABSTRACT

Prior studies suggest that the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of the lipids in pulmonary surfactant to an air-water interface by stabilizing a negatively curved rate-limiting structure that is intermediate between bilayer vesicles and the surface film. This model predicts that other peptides capable of stabilizing negative curvature should also promote lipid adsorption. Previous reports have shown that under appropriate conditions, gramicidin-A (GrA) induces dioleoyl phosphatidylcholine (DOPC), but not dimyristoyl phosphatidylcholine (DMPC), to form the negatively curved hexagonal-II (H(II)) phase. The studies reported here determined if GrA would produce the same effects on adsorption of DMPC and DOPC that the hydrophobic surfactant proteins have on the surfactant lipids. Small angle X-ray scattering and (31)P-nuclear magnetic resonance confirmed that at the particular conditions used to study adsorption, GrA induced DOPC to form the H(II) phase, but DMPC remained lamellar. Measurements of surface tension showed that GrA in vesicles produced a general increase in the rate of adsorption for both phospholipids. When restricted to the interface, however, in preexisting films, GrA with DOPC, but not with DMPC, replicated the ability of the surfactant proteins to promote adsorption of vesicles containing only the lipids. The correlation between the structural and functional effects of GrA with the two phospholipids, and the similar effects on adsorption of GrA with DOPC and the hydrophobic surfactant proteins with the surfactant lipids fit with the model in which SP-B and SP-C facilitate adsorption by stabilizing a rate-limiting intermediate with negative curvature.


Subject(s)
Air , Gramicidin/chemistry , Phospholipids/chemistry , Phospholipids/pharmacokinetics , Water/chemistry , Adsorption , Animals , Cattle , Hydrophobic and Hydrophilic Interactions , Liposomes/chemistry , Liposomes/metabolism , Magnetic Resonance Spectroscopy , Phosphatidylcholines , Proteins/metabolism , Scattering, Radiation , Surface Properties , X-Ray Diffraction , X-Rays
11.
J Agric Food Chem ; 50(21): 6078-85, 2002 Oct 09.
Article in English | MEDLINE | ID: mdl-12358483

ABSTRACT

Puroindolines are lipid-binding proteins from wheat flour that play a significant role in bread crumb texture. The localization of wheat flour lipids and puroindoline-a (PIN-a) in bread dough was studied by confocal scanning laser microscopy (CSLM). Wheat lipids were located around gas cells (GC) and embedded within the protein-starch matrix (SPM) of the dough. PIN-a was mainly located in the matrix of dough, where it was associated with lipids. In contrast, in defatted dough, PIN-a was found around GC. Addition of puroindolines in bread dough induced a defatting of the gas bubble surface and a decrease of the lipid vesicles and/or droplet size embedded within the SPM. Therefore, puroindolines control the lipid partitioning within the different phases of dough, a phenomenon that should have important consequence on the gas bubble expansion and GC formation in the further stages (fermentation, baking) of the bread-making process.


Subject(s)
Bread/analysis , Lipids/analysis , Microscopy, Confocal , Plant Proteins/analysis , Triticum/chemistry , Food Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...