Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37609220

ABSTRACT

Despite being a major target of reconstructive surgery, development of the external ear pinna remains poorly studied. As a craniofacial organ highly accessible to manipulation and highly conserved among mammals, the ear pinna represents a valuable model for the study of appendage development and wound healing in the craniofacial complex. Here we provide a cellular characterization of late gestational and postnatal ear pinna development in Mus musculus and Acomys cahirinus and demonstrate that ear pinna development is largely conserved between these species. Using Wnt1-cre;ROSAmT/mG mice we find that connective tissue fibroblasts, elastic cartilage, dermal papilla cells, dermal sheath cells, vasculature, and adipocytes in the adult pinna are derived from cranial crest. In contrast, we find that skeletal muscle and hair follicles are not derived from neural crest cells. Cellular analysis using the naturally occurring short ear mouse mutant shows that elastic cartilage does not develop properly in distal pinna due to impaired chondroprogenitor proliferation. Interestingly, while chondroprogenitors develop in a mostly continuous sheet, the boundaries of cartilage loss in the short ear mutant strongly correlate with locations of vasculature-conveying foramen. Concomitant with loss of elastic cartilage we report increased numbers of adipocytes, but this seems to be a state acquired in adulthood rather than a developmental abnormality. In addition, chondrogenesis remains impaired in the adult mid-distal ear pinna of these mutants. Together these data establish a developmental basis for the study of the ear pinna with intriguing insights into the development of elastic cartilage.

2.
Nat Commun ; 7: 11164, 2016 04 25.
Article in English | MEDLINE | ID: mdl-27109826

ABSTRACT

Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas other rodents including MRL/MpJ 'healer' mice heal similar injuries by scarring. We demonstrate ear-hole closure is independent of ear size, and closure rate can be modelled with a cubic function. Cellular and genetic analyses reveal that injury induces blastema formation in Acomys cahirinus. Despite cell cycle re-entry in Mus musculus and A. cahirinus, efficient cell cycle progression and proliferation only occurs in spiny mice. Together, our data unite blastema-mediated regeneration in spiny mice with regeneration in other vertebrates such as salamanders, newts and zebrafish, where all healthy adults regenerate in response to injury.


Subject(s)
Ear, External/injuries , Ear, External/physiopathology , Regeneration/physiology , Wound Healing/physiology , Animals , Cell Cycle/genetics , Cell Cycle/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Ear, External/metabolism , Female , Gene Expression Profiling/methods , Male , Mammals/genetics , Mammals/physiology , Mice , Murinae , Rabbits , Regeneration/genetics , Species Specificity , Wound Healing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL