Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(42): 64192-64204, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35471761

ABSTRACT

This study refers to the development of hybrid briquettes using centrifuged sludge from the wastewater treatment of poultry and sawdust from furniture industry. The aim was to evaluate the performance of briquettes as a source of thermal energy, mitigating the risks of the current elimination and reducing the operational costs of their destination. To know the oxidizing characteristics of the briquettes and their mechanical resistance, superior calorific power, ash content, volatile materials, fixed carbon, and resistance to axial compression were evaluated. Thermogravimetric and differential exploratory calorimetry analyses were performed. Statistical treatments were carried out to verify the most significant factors to produce briquettes, the best proportions of the raw materials, and to evaluate whether there is interference from moisture and glue flour used as a binder. The best condition of the sludge-sawdust mixture was 15% and 85%, respectively, with 6.0% moisture. The best-case treatment had 23.82-MPa mechanical resistance, a calorific value of 17.20 MJ kg-1, and a density of 1374.15 kg m-3.


Subject(s)
Abattoirs , Sewage , Animals , Biomass , Carbon , Poultry
2.
J Mech Behav Biomed Mater ; 126: 104991, 2022 02.
Article in English | MEDLINE | ID: mdl-34864573

ABSTRACT

Polymeric aesthetic aligners were introduced in orthodontics as an innovative alternative to fixed appliances, however, their compositions and the thermal molding process may influence the biomechanical characteristics of these aligners. In this study four different clear aligner brands were used, ACE 035 Essix, C + Essix, Crystal 0.75 and Crystal 1.0, whose aim was to identify the thermal-processing influence on the mechanical and physicochemical properties of these materials, and to suggest a orthodontic sequence of wear for these appliances to achieve more effective treatment results. For the tensile tests the sample size calculation was based on probability distributions from the F test. The effect size used was 0.3, type 1 error of 0.05. Statistical Yield strength and Young's Modulus results were evaluated using the Shapiro-Wilk test. The groups were compared using the parametric test of analysis of variance, with Tukey post-test. Differences were statistically considered at the p < 0.05. The Infrared spectroscopy analysis showed no changes in the samples' chemical structure after thermal-processing. However, in the polypropylene aligner, differences were verified in the region attributed to the crystalline phase. Differential Scanning Calorimetry analysis for the same sample showed a crystallinity fraction decrease due to relaxation between polymer chains after molding. In the tensile tests evaluated, the tensile strength and 'Young's modulus presented higher values for aligners containing 100% polyethylene terephthalate glycol. Performing an analogy exercise of the properties of orthodontic wires used in conventional fixed appliances and, relating them to orthodontic plastics, aligners composed of different materials and/or thicknesses could be used in increasing sequence in terms of the modulus of elasticity, starting with C+, which has a lower elastic modulus value, using the ACE 035 as an intermediate and finishing with the Crystal 0.75 and 1.0, providing the desired stiffness to the aligners for the final phase.


Subject(s)
Orthodontic Appliances, Fixed , Plastics , Elastic Modulus , Materials Testing , Tensile Strength
3.
Plant Foods Hum Nutr ; 76(1): 1-11, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33638764

ABSTRACT

Vegetable-based proteins may be extracted from different sources using different extraction methods, among them, ultrasound-assisted extraction stands out. This review presents the current knowledge on ultrasound-assisted extraction (UAE) and the functional properties of extracted vegetable proteins. Ultrasound generates cavitation in a liquid medium, defined as gas and vapor microbubbles collapse under pressure changes large enough to separate them in the medium. Cavitation facilitates the solvent and solid interaction, increasing yield and reducing extraction periods and temperature used. Moreover, ultrasound treatment changed extracted protein properties such as solubility, hydrophobicity, emulsifying and foam, water and oil absorption capacity, viscosity, and gelatinization. Ultrasound-assisted extraction is a promising technique for the food technology sector, presenting low environmental impact, lower energy and solvent consumption, and it is in accordance with green chemistry technology and sustainable concepts.


Subject(s)
Chemical Fractionation , Plant Proteins, Dietary , Solvents , Technology , Vegetables
4.
Environ Technol ; 40(17): 2276-2289, 2019 Jul.
Article in English | MEDLINE | ID: mdl-29436967

ABSTRACT

For the photocatalytic degradation of the hydrogen sulphide (H2S) in the gas-phase it was developed a rectangular reactor, coated with acrylic paint supported on fiber cement material. The surface formed by the paint coverage was characterized structural and morphologically by scanning electron microscopy with energy dispersive X-ray and X-ray diffraction analysis. The flow rate and the inlet concentration of H2S were evaluated as operational performance parameters of the reactor. Removal efficiencies of up to 94% were obtained at a flow rate of 2 L min-1 (residence time of 115 s) and inlet concentration of 31 ppm of H2S. In addition, the H2S degradation kinetics was modelled according to the Langmuir-Hinshelwood (L-H) model for the inlet concentrations of 8-23 ppm of H2S. The results suggest that flow rate has a more important influence on photocatalytic degradation than the inlet concentration. It is assumed that H2S has been oxidized to SO42- , a condition that led to a deactivation of the photocatalyst after 193 min of semi-continuous use.


Subject(s)
Hydrogen Sulfide , Titanium , Catalysis , Kinetics , Oxidation-Reduction , Paint
5.
J Microencapsul ; 35(7-8): 705-719, 2018.
Article in English | MEDLINE | ID: mdl-30719943

ABSTRACT

The present study aimed to optimise the microencapsulation of Lactobacillus acidophilus La-05 by spray drying, using soy extract and maltodextrin as encapsulants. Air inlet temperature, maltodextrin/soy extract ratio and feed flow rate were investigated through Central Composite Rotational Design (CCRD). Probiotic viability increased with increasing the proportion of soy extract. Temperature and feed flow rate had a negative effect. Particle diameter ranged from 4.97 to 8.82 µm, water activity from 0.25 to 0.52 and moisture from 2.30 to 7.01 g.100g-1 Particles produced following the optimised conditions (air temperature of 87 °C, maltodextrin/soy extract ratio of 2:3 w.w-1, feed flow rate of 0.54 L.h-1) reached Encapsulation yield (EY) of 83%. Thermogravimetry and FTIR analysis suggested that microcapsules could protect L. acidophilus cells against dehydration and heating. During storage, microencapsulated probiotic had high cell viability (reductions ranged between 0.12 and 1.72 log cycles). Soy extract/maltodextrin presented well-encapsulating properties of Lactobacillus acidophilus La-05.


Subject(s)
Glycine max/chemistry , Lactobacillus acidophilus/cytology , Plant Extracts/chemistry , Polysaccharides/chemistry , Probiotics , Capsules/chemistry , Cells, Immobilized/chemistry , Cells, Immobilized/cytology , Desiccation , Drug Compounding/methods , Lactobacillus acidophilus/chemistry , Microbial Viability , Probiotics/chemistry
6.
Carbohydr Polym ; 133: 277-83, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26344282

ABSTRACT

Silver nanoparticles (AgNPs) have attracted great attention due to its optical, electrical and thermal properties. Cellulosic supports for these nanoparticles are of particular interest because of its availability, flexibility and biocompatibility. In this work, AgNPs were synthesized using two cellulosic materials, cellophane (CP) and filter paper (FP), as matrix support. Cellulosic materials were immersed in an aqueous solution of silver nitrate containing polyvinylpyrrolidone (PVP) and then reduced with hydroxylamine. The obtained nanocomposites (CP-AgNPs and FP-AgNPs) were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (DRX) and scanning electron microscopy (SEM). AgNPs of near 15nm anchored onto cellulosic surfaces were detected. The thermal properties of these materials were investigated through thermogravimetry (TG). Their kinetic of thermal decomposition was studied by the Vyasovkin method of dynamic isoconvertion, which indicated a catalytic effect of AgNPs in the cellulose thermal decomposition reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...