Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L344-L352, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38252663

ABSTRACT

We have discovered intrinsically fibrogenic mesenchymal progenitor cells (MPCs) in the human idiopathic pulmonary fibrosis (IPF) lung. IPF MPCs display a durably distinct transcriptome, suggesting that they have undergone epigenetic modifications. Prior studies indicate that the chromatin remodeler Brg1 associates with the arginine methyltransferase PRMT5 to epigenetically regulate transcription factors. We hypothesize that a Brg1/PRMT5 nuclear complex epigenetically regulates critical nodes in IPF MPC self-renewal signaling networks. IPF and control MPCs were isolated from primary mesenchymal cell lines established from IPF and control patients. RNA-sequencing identified increased expression of the FOXO1 transcription factor in IPF MPCs compared with controls, a result we confirmed by Q-PCR and Western blot analysis. Immunoprecipitation identified a CD44/Brg1/PRMT5 nuclear complex in IPF MPCs. Chromatin immunoprecipitation assays showed that PRMT5 and its methylation mark H3R2me2 are enriched on the FOXO1 promoter. We show that loss of Brg1 and PRMT5 function decreases FOXO1 expression and impairs IPF MPC self-renewal, and that loss of FOXO1 function decreases IPF MPC self-renewal and expression of the SOX2 and OCT4 stemness markers. Our findings indicate that the FOXO1 gene is overexpressed in IPF MPCs in a CD44/Brg1/PRMT5 nuclear complex-dependent manner. Our data suggest that Brg1 alters chromatin accessibility, enriching PRMT5 occupancy on the FOXO1 promoter, and PRMT5 methylates histone H3 arginine 2 (H3R2) on the FOXO1 promoter, increasing its expression. Our data are in accord with the concept that this coordinated interplay is responsible for promoting IPF MPC self-renewal and maintaining a critical pool of fibrogenic MPCs that drive IPF progression.NEW & NOTEWORTHY Our research offers valuable understanding regarding the epigenetic control of IPF MPC. The data we obtained strongly support the idea that the coordination between chromatin remodeling and histone methylation plays a key role in regulating transcription factors. Specifically, our findings indicate that FOXO1, an essential transcription factor, likely governs the self-renewal of IPF MPC, which is crucial for maintaining a critical pool of fibrogenic MPCs. This interplay could be an important therapeutic target.


Subject(s)
Idiopathic Pulmonary Fibrosis , Mesenchymal Stem Cells , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Histones/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Chromatin/metabolism , Mesenchymal Stem Cells/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
2.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L849-L862, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37121574

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease. We discovered fibrogenic mesenchymal progenitor cells (MPCs) in the lungs of IPF patients that display cell-autonomous fibrogenicity and drive fibrotic progression. In a study of the IPF MPC nuclear proteome, we identified DNA damage as one of the most altered functions in IPF MPCs. In prior work we found that IL-8 drives IPF MPC self-renewal. IL-8 can promote replicative stress and DNA damage and induce senescence through the CXCR2 receptor. We hypothesized that IL-8 promotes DNA damage-mediated senescence in IPF MPCs. We show that IL-8 induces DNA damage and promotes IPF MPC senescence. We discovered that IL-8 concurrently promotes senescence and upregulation of the programmed death ligand 1 (PD-L1) in a CXCR2-dependent manner. Disruption of programmed cell death protein-1 (PD-1)-PD-L1 interaction promotes natural killer (NK) cell killing of IPF MPCs in vitro and arrests IPF MPC-mediated experimental lung fibrosis in vivo. Immunohistochemical (IHC) analysis of IPF lung tissue identified PD-L1-expressing IPF MPCs codistributing with NK cells and ß-galactosidase-positive cells. Our data indicate that IL-8 simultaneously promotes IPF MPC DNA damage-induced senescence and high PD-L1 expression, enabling IPF MPCs to elude immune cell-targeted removal. Disruption of PD-1-PD-L1 interaction may limit IPF MPC-mediated fibrotic progression.NEW & NOTEWORTHY Here we show that IL-8 concurrently promotes senescence and upregulation of PD-L1 in IPF MPCs. IHC analysis identifies the presence of senescent IPF MPCs intermingled with NK cells in the fibroblastic focus, suggesting that senescent MPCs elude immune cell surveillance. We demonstrate that disruption of PD-1/PD-L1 interaction promotes NK cell killing of IPF MPCs and arrests IPF MPC-mediated experimental lung fibrosis. Disruption of PD-1/PD-L1 interaction may be one means to limit fibrotic progression.


Subject(s)
Idiopathic Pulmonary Fibrosis , Mesenchymal Stem Cells , Humans , B7-H1 Antigen/metabolism , Cell Proliferation , Cellular Senescence/genetics , Fibrosis , Idiopathic Pulmonary Fibrosis/metabolism , Interleukin-8/metabolism , Mesenchymal Stem Cells/metabolism , Programmed Cell Death 1 Receptor/metabolism
3.
JCI Insight ; 8(4)2023 02 22.
Article in English | MEDLINE | ID: mdl-36656644

ABSTRACT

Hypoxia is a sentinel feature of idiopathic pulmonary fibrosis (IPF). The IPF microenvironment contains high lactate levels, and hypoxia enhances cellular lactate production. Lactate, acting through the GPR81 lactate receptor, serves as a signal molecule regulating cellular processes. We previously identified intrinsically fibrogenic mesenchymal progenitor cells (MPCs) that drive fibrosis in the lungs of patients with IPF. However, whether hypoxia enhances IPF MPC fibrogenicity is unclear. We hypothesized that hypoxia increases IPF MPC fibrogenicity via lactate and its cognate receptor GPR81. Here we show that hypoxia promotes IPF MPC self-renewal. The mechanism involves hypoxia-mediated enhancement of LDHA function and lactate production and release. Hypoxia also increases HIF1α levels, and this increase in turn augments the expression of GPR81. Exogenous lactate operating through GPR81 promotes IPF MPC self-renewal. IHC analysis of IPF lung tissue demonstrates IPF MPCs expressing GPR81 and hypoxic markers on the periphery of the fibroblastic focus. We show that hypoxia enhances IPF MPC fibrogenicity in vivo. We demonstrate that knockdown of GPR81 inhibits hypoxia-induced IPF MPC self-renewal in vitro and attenuates hypoxia-induced IPF MPC fibrogenicity in vivo. Our data demonstrate that hypoxia creates a feed-forward loop that augments IPF MPC fibrogenicity via the lactate/GPR81/HIF1α pathway.


Subject(s)
Idiopathic Pulmonary Fibrosis , Mesenchymal Stem Cells , Humans , Lactic Acid/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Signal Transduction , Mesenchymal Stem Cells/metabolism , Hypoxia/metabolism
4.
APL Bioeng ; 5(4): 046102, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34805716

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease targeting the alveolar gas exchange apparatus, leading to death by asphyxiation. IPF progresses on a tissue scale through aberrant matrix remodeling, enhanced cell contraction, and subsequent microenvironment densification. Although two pharmaceuticals modestly slow progression, IPF patient survival averages less than 5 years. A major impediment to therapeutic development is the lack of high-fidelity models that account for the fibrotic microenvironment. Our goal is to create a three-dimensional (3D) platform to enable lung fibrosis studies and recapitulate IPF tissue features. We demonstrate that normal lung fibroblasts encapsulated in collagen microspheres can be pushed toward an activated phenotype, treated with FDA-approved therapies, and their fibrotic function quantified using imaging assays (extracellular matrix deposition, contractile protein expression, and microenvironment compaction). Highlighting the system's utility, we further show that fibroblasts isolated from IPF patient lungs maintain fibrotic phenotypes and manifest reduced fibrotic function when treated with epigenetic modifiers. Our system enables enhanced screening due to improved predictability and fidelity compared to 2D systems combined with superior tractability and throughput compared to 3D systems.

5.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: mdl-33822772

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease. We previously identified fibrogenic mesenchymal progenitor cells (MPCs) in the lungs of patients with IPF who serve as drivers of progressive fibrosis. Recent single-cell RNA sequencing work revealed that IPF MPCs with the highest transcriptomic network entropy differ the most from control MPCs and that increased CD44 was a marker of these IPF MPCs. We hypothesize that IPF MPCs with high CD44 (CD44hi) expression will display enhanced fibrogenicity. We demonstrate that CD44-expressing MPCs are present at the periphery of the IPF fibroblastic focus, placing them in regions of active fibrogenesis. In a humanized mouse xenograft model, CD44hi IPF MPCs are more fibrogenic than CD44lo IPF MPCs, and knockdown of CD44 diminishes their fibrogenicity. CD44hi IPF MPCs display increased expression of pluripotency markers and enhanced self-renewal compared with CD44lo IPF MPCs, properties potentiated by IL-8. The mechanism involves the accumulation of CD44 within the nucleus, where it associates with the chromatin modulator protein Brahma-related gene 1 (Brg1) and the zinc finger E-box binding homeobox 1 (Zeb1) transcription factor. This CD44/Brg1/Zeb1 nuclear protein complex targets the Sox2 gene, promoting its upregulation and self-renewal. Our data implicate CD44 interaction with the epigenetic modulator protein Brg1 in conveying IPF MPCs with cell-autonomous fibrogenicity.


Subject(s)
DNA Helicases/metabolism , Hyaluronan Receptors/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Adoptive Transfer , Animals , Cell Self Renewal/drug effects , Humans , Idiopathic Pulmonary Fibrosis/pathology , Interleukin-8/pharmacology , Lung/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/pathology , Mice , SOXB1 Transcription Factors/drug effects , SOXB1 Transcription Factors/metabolism , Zinc Finger E-box-Binding Homeobox 1/drug effects , Zinc Finger E-box-Binding Homeobox 1/metabolism
6.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L926-L941, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33719561

ABSTRACT

Despite modest improvement in patient outcomes from recent advances in pharmacotherapy targeting fibrogenic signaling pathways, idiopathic pulmonary fibrosis (IPF) remains a major unsolved clinical problem. One reason for this is that available antifibrotic agents slow down but do not arrest fibrotic progression. To arrest fibrotic progression, its obligatory drivers need to be identified. We previously discovered that fibrogenic mesenchymal progenitor cells (MPCs) are key drivers of fibrotic progression in IPF, serving as cells of origin for disease-mediating myofibroblasts. IPF MPCs have high levels of nuclear S100A4, which interacts with the proteasome to promote p53 degradation and self-renewal. However, the mechanism underlying S100A4 accumulation in the nucleus of IPF MPCs remains unknown. Here we show that hyaluronan (HA) is present in the fibroblastic focus together with CD44-expressing MPCs and that ligation of CD44 by HA triggers S100A4 nuclear translocation to support IPF MPC self-renewal. The mechanism involves HA-mediated formation of a CD44/S100A4/transportin 1 complex, which promotes S100A4 nuclear import. In a humanized mouse model of pulmonary fibrosis, IPF MPC fibrogenicity was significantly attenuated by 1) knockdown of CD44 or 2) introduction of an S100A4 mutant construct that prevents S100A4 nuclear import. These data indicate that signaling through the HA/CD44/S100A4 axis is an integral component of IPF MPC fibrogenicity.


Subject(s)
Cell Nucleus/metabolism , Hyaluronan Receptors/metabolism , Hyaluronic Acid/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Mesenchymal Stem Cells/metabolism , S100 Calcium-Binding Protein A4/metabolism , Signal Transduction , Animals , Cell Nucleus/genetics , Cell Nucleus/pathology , Disease Models, Animal , Gene Knockdown Techniques , Humans , Hyaluronan Receptors/genetics , Hyaluronic Acid/genetics , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Mesenchymal Stem Cells/pathology , Mice , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , S100 Calcium-Binding Protein A4/genetics , beta Karyopherins/genetics , beta Karyopherins/metabolism
7.
Sci Rep ; 10(1): 11162, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32636398

ABSTRACT

In Idiopathic Pulmonary Fibrosis (IPF), there is unrelenting scarring of the lung mediated by pathological mesenchymal progenitor cells (MPCs) that manifest autonomous fibrogenicity in xenograft models. To determine where along their differentiation trajectory IPF MPCs acquire fibrogenic properties, we analyzed the transcriptome of 335 MPCs isolated from the lungs of 3 control and 3 IPF patients at the single-cell level. Using transcriptional entropy as a metric for differentiated state, we found that the least differentiated IPF MPCs displayed the largest differences in their transcriptional profile compared to control MPCs. To validate entropy as a surrogate for differentiated state functionally, we identified increased CD44 as a characteristic of the most entropic IPF MPCs. Using FACS to stratify IPF MPCs based on CD44 expression, we determined that CD44hi IPF MPCs manifested an increased capacity for anchorage-independent colony formation compared to CD44lo IPF MPCs. To validate our analysis morphologically, we used two differentially expressed genes distinguishing IPF MPCs from control (CD44, cell surface; and MARCKS, intracellular). In IPF lung tissue, pathological MPCs resided in the highly cellular perimeter region of the fibroblastic focus. Our data support the concept that IPF fibroblasts acquire a cell-autonomous pathological phenotype early in their differentiation trajectory.


Subject(s)
Cell Differentiation , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Sequence Analysis, RNA , Case-Control Studies , Cell Differentiation/genetics , Fluorescent Antibody Technique , Gene Expression Profiling , Humans , Hyaluronan Receptors/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Mesenchymal Stem Cells/pathology
8.
Am J Respir Crit Care Med ; 200(3): 348-358, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30742544

ABSTRACT

Rationale: Chronic obstructive pulmonary disease is an independent risk factor for lung cancer, but the underlying molecular mechanisms are unknown. We hypothesized that lung stromal cells activate pathological gene expression programs that support oncogenesis.Objectives: To identify molecular mechanisms operating in the lung stroma that support the development of lung cancer.Methods: The study included subjects with and without lung cancer across a spectrum of lung-function values. We conducted a multiomics analysis of nonmalignant lung tissue to quantify the transcriptome, translatome, and proteome.Measurements and Main Results: Cancer-associated gene expression changes predominantly manifested as alterations in the efficiency of mRNA translation modulating protein levels in the absence of corresponding changes in mRNA levels. The molecular mechanisms that drove these cancer-associated translation programs differed based on lung function. In subjects with normal to mildly impaired lung function, the mammalian target of rapamycin (mTOR) pathway served as an upstream driver, whereas in subjects with severe airflow obstruction, pathways downstream of pathological extracellular matrix emerged. Consistent with a role during cancer initiation, both the mTOR and extracellular matrix gene expression programs paralleled the activation of previously identified procancer secretomes. Furthermore, an in situ examination of lung tissue showed that stromal fibroblasts expressed cancer-associated proteins from two procancer secretomes: one that included IL-6 (in cases of mild or no airflow obstruction), and one that included BMP1 (in cases of severe airflow obstruction).Conclusions: Two distinct stromal gene expression programs that promote cancer initiation are activated in patients with lung cancer depending on lung function. Our work has implications both for screening strategies and for personalized approaches to cancer treatment.


Subject(s)
Lung Neoplasms/etiology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , Stromal Cells/pathology , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Forced Expiratory Volume , Humans , Male , Middle Aged , Proteome , Pulmonary Disease, Chronic Obstructive/pathology , Transcriptome
9.
JCI Insight ; 4(1)2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30626754

ABSTRACT

The extracellular matrix (ECM) in idiopathic pulmonary fibrosis (IPF) drives fibrosis progression; however, the ECM composition of the fibroblastic focus (the hallmark lesion in IPF) and adjacent regions remains incompletely defined. Herein, we serially sectioned IPF lung specimens constructed into tissue microarrays and immunostained for ECM components reported to be deregulated in IPF. Immunostained sections were imaged, anatomically aligned, and 3D reconstructed. The myofibroblast core of the fibroblastic focus (defined by collagen I, α-smooth muscle actin, and procollagen I immunoreactivity) was associated with collagens III, IV, V, and VI; fibronectin; hyaluronan; and versican immunoreactivity. Hyaluronan immunoreactivity was also present at the fibroblastic focus perimeter and at sites where early lesions appear to be forming. Fibrinogen immunoreactivity was often observed at regions of damaged epithelium lining the airspace and the perimeter of the myofibroblast core but was absent from the myofibroblast core itself. The ECM components of the fibroblastic focus were distributed in a characteristic and reproducible manner in multiple patients. This information can inform the development of high-fidelity model systems to dissect mechanisms by which the IPF ECM drives fibrosis progression.

10.
Cancer Gene Ther ; 26(5-6): 157-165, 2019 05.
Article in English | MEDLINE | ID: mdl-30420719

ABSTRACT

Hyperactivation of eIF4F-mediated translation occurs in many if not all cancers. As a consequence, cancer cells aberrantly enhance expression of malignancy-related proteins that are involved in cell cycle progression, angiogenesis, growth, and proliferation. With this in mind eIF4F is a promising molecular target for therapeutics that counteract pathological eIF4F activity. Here we used 4EGI-1, a small-molecule inhibitor of cap-mediated translation that disrupts formation of the eukaryotic initiation factor 4F (eIF4F) complex to treat non-small cell lung cancer (NSCLC). Treatment of cells with 4EGI-1 reduced cell proliferation, decreased cap-dependent complex formation, induced apoptosis, enhanced sensitivity to gemcitabine, and altered global cellular translation. Suppression of cap-dependent translation by 4EGI-1 resulted in diminished expression of oncogenic proteins c-Myc, Bcl-2, cyclin D1, and survivin, whereas ß-actin expression was left unchanged. In light of these results, small-molecule inhibitors like 4EGI-1 alone or with chemotherapy should be further evaluated in the treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Hydrazones/metabolism , Lung Neoplasms/genetics , Thiazoles/metabolism , Apoptosis , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Humans , Lung Neoplasms/pathology
11.
Matrix Biol ; 73: 77-104, 2018 11.
Article in English | MEDLINE | ID: mdl-29524630

ABSTRACT

The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.


Subject(s)
Extracellular Matrix/physiology , Lung Diseases/metabolism , Lung/metabolism , Biomechanical Phenomena , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Homeostasis , Humans , Phenotype
12.
Am J Respir Crit Care Med ; 198(4): 486-496, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29579397

ABSTRACT

RATIONALE: The lung extracellular matrix (ECM) in idiopathic pulmonary fibrosis (IPF) mediates progression of fibrosis by decreasing fibroblast expression of miR-29 (microRNA-29), a master negative regulator of ECM production. The molecular mechanism is undefined. IPF-ECM is stiffer than normal. Stiffness drives fibroblast ECM production in a YAP (yes-associated protein)-dependent manner, and YAP is a known regulator of miR-29. Therefore, we tested the hypothesis that negative regulation of miR-29 by IPF-ECM was mediated by mechanotransduction of stiffness. OBJECTIVES: To determine how IPF-ECM negatively regulates miR-29. METHODS: We decellularized lung ECM using detergents and prepared polyacrylamide hydrogels of defined stiffness by varying acrylamide concentrations. Mechanistic studies were guided by immunohistochemistry of IPF lung and used cell culture, RNA-binding protein assays, and xenograft models. MEASUREMENTS AND MAIN RESULTS: Contrary to our hypothesis, we excluded fibroblast mechanotransduction of ECM stiffness as the primary mechanism deregulating miR-29. Instead, systematic examination of miR-29 biogenesis revealed a microRNA processing defect that impeded processing of miR-29 into its mature bioactive forms. Immunohistochemical analysis of the microRNA processing machinery in IPF lung specimens revealed decreased Dicer1 expression in the procollagen-rich myofibroblastic core of fibroblastic foci compared with the focus perimeter and adjacent alveolar walls. Mechanistically, IPF-ECM increased association of the Dicer1 transcript with RNA binding protein AUF1 (AU-binding factor 1), and Dicer1 knockdown conferred primary human lung fibroblasts with cell-autonomous fibrogenicity in zebrafish and mouse lung xenograft models. CONCLUSIONS: Our data identify suppression of fibroblast Dicer1 expression in the myofibroblast-rich IPF fibroblastic focus core as a central step in the mechanism by which the ECM sustains fibrosis progression in IPF.


Subject(s)
DEAD-box RNA Helicases/genetics , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , MicroRNAs/metabolism , Ribonuclease III/genetics , Animals , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Fibrosis/genetics , Fibrosis/pathology , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung/pathology , Mice , Zebrafish
13.
J Clin Invest ; 128(1): 45-53, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29293088

ABSTRACT

The extracellular matrix (ECM) is dynamically tuned to optimize physiological function. Its major properties, including composition and mechanics, profoundly influence cell biology. Cell-ECM interactions operate through an integrated set of sensor and effector circuits that use several classes of receptors and signal transduction pathways. At the single-cell level, the ECM governs differentiation, metabolism, motility, orientation, proliferation, and survival. At the cell population level, the ECM provides higher-order guidance that is essential for physiological function. When pathological changes in the ECM lead to impairment of organ function, we use the term "fibrosis." In this Review, we differentiate fibrosis initiation from progression and focus primarily on progressive lung fibrosis impairing organ function. We present a working model to explain how the altered ECM is not only a consequence but also a driver of fibrosis. Additionally, we advance the concept that fibrosis progression occurs in a fibrogenic niche that is composed of a fibrogenic ECM that nurtures fibrogenic mesenchymal progenitor cells and their fibrogenic progeny.


Subject(s)
Cell Movement , Cell Polarity , Extracellular Matrix/metabolism , Lung Diseases/metabolism , Mesenchymal Stem Cells/metabolism , Signal Transduction , Animals , Cell Differentiation , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Fibrosis , Humans , Lung Diseases/genetics , Lung Diseases/pathology , Mesenchymal Stem Cells/pathology
14.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L127-L136, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28860143

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease, but the mechanisms driving progression remain incompletely defined. We previously reported that the IPF lung harbors fibrogenic mesenchymal progenitor cells (MPCs), which serve as a cell of origin for IPF fibroblasts. Proliferating IPF MPCs are located at the periphery of fibroblastic foci in an active cellular front at the interface between the myofibroblast-rich focus core and adjacent normal alveolar structures. Among a large set of genes that distinguish IPF MPCs from their control counterparts, we identified IL-8 as a candidate mediator of IPF MPC fibrogenicity and driver of fibrotic progression. IPF MPCs and their progeny displayed increased steady-state levels of IL-8 and its cognate receptor CXCR1 and secreted more IL-8 than did controls. IL-8 functioned in an autocrine manner promoting IPF MPC self-renewal and the proliferation and motility of IPF MPC progeny. Secreted IL-8 also functioned in a paracrine manner stimulating macrophage migration. Analysis of IPF lung tissue demonstrated codistribution of IPF MPCs with activated macrophages in the active cellular front of the fibroblastic focus. These findings indicate that IPF MPC-derived IL-8 is capable of expanding the mesenchymal cell population and recruiting activated macrophages cells to actively evolving fibrotic lesions.


Subject(s)
Cell Movement , Idiopathic Pulmonary Fibrosis/pathology , Interleukin-8/metabolism , Mesenchymal Stem Cells/pathology , Cell Proliferation , Cells, Cultured , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Interleukin-8/genetics , Mesenchymal Stem Cells/metabolism , Signal Transduction
15.
J Clin Invest ; 127(7): 2586-2597, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28530639

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a prevalence of 1 million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli and leads to death by asphyxiation. We previously discovered that the IPF lung harbors fibrogenic mesenchymal progenitor cells (MPCs) that serve as a cell of origin for disease-mediating myofibroblasts. In a prior genomewide transcriptional analysis, we found that IPF MPCs displayed increased expression of S100 calcium-binding A4 (S100A4), a protein linked to cancer cell proliferation and invasiveness. Here, we have examined whether S100A4 mediates MPC fibrogenicity. Ex vivo analysis revealed that IPF MPCs had increased levels of nuclear S100A4, which interacts with L-isoaspartyl methyltransferase to promote p53 degradation and MPC self-renewal. In vivo, injection of human IPF MPCs converted a self-limited bleomycin-induced mouse model of lung fibrosis to a model of persistent fibrosis in an S100A4-dependent manner. S100A4 gain of function was sufficient to confer fibrotic properties to non-IPF MPCs. In IPF tissue, fibroblastic foci contained cells expressing Ki67 and the MPC markers SSEA4 and S100A4. The expression colocalized in an interface region between myofibroblasts in the focus core and normal alveolar structures, defining this region as an active fibrotic front. Our findings indicate that IPF MPCs are intrinsically fibrogenic and that S100A4 confers MPCs with fibrogenicity.


Subject(s)
Idiopathic Pulmonary Fibrosis/metabolism , Mesenchymal Stem Cells/metabolism , S100 Calcium-Binding Protein A4/metabolism , Animals , Disease Models, Animal , Female , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Male , Mesenchymal Stem Cells/pathology , Mice , Mice, Transgenic , S100 Calcium-Binding Protein A4/genetics
16.
Biol Blood Marrow Transplant ; 22(8): 1383-1390, 2016 08.
Article in English | MEDLINE | ID: mdl-27155584

ABSTRACT

Pulmonary complications due to infection and idiopathic pneumonia syndrome (IPS), a noninfectious lung injury in hematopoietic stem cell transplant (HSCT) recipients, are frequent causes of transplantation-related mortality and morbidity. Our objective was to characterize the global bronchoalveolar lavage fluid (BALF) protein expression of IPS to identify proteins and pathways that differentiate IPS from infectious lung injury after HSCT. We studied 30 BALF samples from patients who developed lung injury within 180 days of HSCT or cellular therapy transfusion (natural killer cell transfusion). Adult subjects were classified as having IPS or infectious lung injury by the criteria outlined in the 2011 American Thoracic Society statement. BALF was depleted of hemoglobin and 14 high-abundance proteins, treated with trypsin, and labeled with isobaric tagging for relative and absolute quantification (iTRAQ) 8-plex reagent for two-dimensional capillary liquid chromatography (LC) and data dependent peptide tandem mass spectrometry (MS) on an Orbitrap Velos system in higher-energy collision-induced dissociation activation mode. Protein identification employed a target-decoy strategy using ProteinPilot within Galaxy P. The relative protein abundance was determined with reference to a global internal standard consisting of pooled BALF from patients with respiratory failure and no history of HSCT. A variance weighted t-test controlling for a false discovery rate of ≤5% was used to identify proteins that showed differential expression between IPS and infectious lung injury. The biological relevance of these proteins was determined by using gene ontology enrichment analysis and Ingenuity Pathway Analysis. We characterized 12 IPS and 18 infectious lung injury BALF samples. In the 5 iTRAQ LC-MS/MS experiments 845, 735, 532, 615, and 594 proteins were identified for a total of 1125 unique proteins and 368 common proteins across all 5 LC-MS/MS experiments. When comparing IPS to infectious lung injury, 96 proteins were differentially expressed. Gene ontology enrichment analysis showed that these proteins participate in biological processes involved in the development of lung injury after HSCT. These include acute phase response signaling, complement system, coagulation system, liver X receptor (LXR)/retinoid X receptor (RXR), and farsenoid X receptor (FXR)/RXR modulation. We identified 2 canonical pathways modulated by TNF-α, FXR/RXR activation, and IL2 signaling in macrophages. The proteins also mapped to blood coagulation, fibrinolysis, and wound healing-processes that participate in organ repair. Cell movement was identified as significantly over-represented by proteins with differential expression between IPS and infection. In conclusion, the BALF protein expression in IPS differed significantly from infectious lung injury in HSCT recipients. These differences provide insights into mechanisms that are activated in lung injury in HSCT recipients and suggest potential therapeutic targets to augment lung repair.


Subject(s)
Hematopoietic Stem Cell Transplantation/adverse effects , Lung Injury/etiology , Pneumonia/etiology , Proteome/analysis , Adult , Aged , Bronchoalveolar Lavage Fluid/chemistry , Gene Expression Profiling , Gene Ontology , Humans , Middle Aged , Proteomics/methods
17.
Neoplasia ; 18(2): 100-10, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26936396

ABSTRACT

BACKGROUND: Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. MATERIALS AND METHODS: To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)(+) (MCF-7L) and ERα(-) (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. RESULTS: AIB1 positively regulated IGF-I-induced mRNA translation in both ERα(+) and ERα(-) cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα(+) and ERα(-) knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. CONCLUSION: The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation.


Subject(s)
Breast Neoplasms/genetics , Insulin-Like Growth Factor I/genetics , Nuclear Receptor Coactivator 3/genetics , Protein Biosynthesis , Adaptor Proteins, Signal Transducing/biosynthesis , Breast Neoplasms/pathology , Cell Cycle Proteins , Estrogen Receptor alpha/genetics , Eukaryotic Initiation Factor-4E/biosynthesis , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Insulin-Like Growth Factor I/biosynthesis , MCF-7 Cells , Phosphoproteins/biosynthesis , Phosphorylation , Ribosomal Protein S6 Kinases, 70-kDa/biosynthesis , Signal Transduction/genetics , TOR Serine-Threonine Kinases/biosynthesis
18.
Ann Am Thorac Soc ; 12 Suppl 1: S64-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25830839

ABSTRACT

The 57th annual Thomas L. Petty Aspen Lung Conference, entitled "Rebuilding the Injured Lung," was held from June 4 to 7, 2014 at the Gant Conference Center in Aspen, Colorado. Investigators from a wide range of disciplines and perspectives convened to discuss the biology of lung injury, how the lung repairs itself, how and why repair fails, and how the repair process can be enhanced. Among the challenges identified in the course of the conference was how to develop more predictive experimental models that capture the multidimensional complexity of lung injury and repair in a tractable manner. From such approaches that successfully fuse the biological and physical sciences, the group envisioned that new therapies for acute and chronic lung injury would emerge. The discussion of experimental therapeutics ranged from pharmaceuticals and cells that interdict fibrosis and enhance repair to a de novo lung derived from stem cells repopulating a decellularized matrix.


Subject(s)
Lung Injury/therapy , Lung/pathology , Lung/physiology , Regeneration/physiology , Congresses as Topic , Fibrosis , Humans
19.
Am J Respir Cell Mol Biol ; 53(3): 391-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25612003

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is characterized by the relentless expansion of fibroblasts depositing type I collagen within the alveolar wall and obliterating the alveolar airspace. MicroRNA (miR)-29 is a potent regulator of collagen expression. In IPF, miR-29 levels are low, whereas type I collagen expression is high. However, the mechanism for suppression of miR-29 and increased type I collagen expression in IPF remains unclear. Here we show that when IPF fibroblasts are seeded on polymerized type I collagen, miR-29c levels are suppressed and type I collagen expression is high. In contrast, miR-29c is high and type I collagen expression is low in control fibroblasts. We demonstrate that the mechanism for suppression of miR-29 during IPF fibroblast interaction with polymerized collagen involves inappropriately low protein phosphatase (PP) 2A function, leading to histone deacetylase (HDA) C4 phosphorylation and decreased nuclear translocation of HDAC4. We demonstrate that overexpression of HDAC4 in IPF fibroblasts restored miR-29c levels and decreased type I collagen expression, whereas knocking down HDAC4 in control fibroblasts suppressed miR-29c levels and increased type I collagen expression. Our data indicate that IPF fibroblast interaction with polymerized type I collagen results in an aberrant PP2A/HDAC4 axis, which suppresses miR-29, causing a pathologic increase in type I collagen expression.


Subject(s)
Collagen Type I/metabolism , Fibroblasts/enzymology , Histone Deacetylases/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , MicroRNAs/metabolism , Phosphoprotein Phosphatases/metabolism , Repressor Proteins/metabolism , Cell Nucleus/enzymology , Cells, Cultured , Epigenesis, Genetic , Humans , Phosphorylation , Protein Phosphatase 2C , Protein Processing, Post-Translational , Protein Transport , Signal Transduction
20.
Biochim Biophys Acta ; 1849(7): 774-80, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25263391

ABSTRACT

Mitogen activated translation initiation factor eIF4E mediates normal cell proliferation, yet induces tumorigenesis when deregulated and overexpressed. It remains unknown, how activated eIF4E directs such distinct biological outputs. Our experimental data provide evidence that distinct threshold levels of eIF4E govern its biological output in lactating mammary glands and that eIF4E overexpression in the context of cell population expansion can initiate malignant transformation by enabling cells to evade DNA damage checkpoints caused by hyperproliferative oncogenic stimuli. These findings point at the cellular level of eIF4E as an important sensor for normal or pro-neoplastic propagation of cells. Here, we describe a model that links the pro-neoplastic function of eIF4F to its ability to disable oncogene-activated tumor surveillance programs; and propose a novel therapeutic strategy for cancer prevention based upon targeting aberrant eIF4E with safe doses of small-molecule antagonists to ensure the maintenance of eIF4E levels below the pro-neoplastic threshold. This article is part of a Special Issue entitled: Translation and Cancer.


Subject(s)
Eukaryotic Initiation Factor-4E/metabolism , Models, Biological , Neoplasm Proteins/metabolism , Neoplasms/immunology , Protein Biosynthesis , Animals , Eukaryotic Initiation Factor-4E/genetics , Female , Humans , Male , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL