Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 805: 150262, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34536861

ABSTRACT

Plants are either recognized to produce nitrous oxide (N2O) or considered as a medium to transport soil-produced N2O. To date, it is not clear whether in their habitat plants conduit N2O produced in soil or are a natural source. We aimed to understand role of plants in N2O emissions in field conditions. Therefore, rubber plants (Ficus elastica) were planted in the field; then plant and soil chambers were deployed simultaneously to collect gas samples, and 15N site preference (SP) of N2O was evaluated. The mean SP values of plant and soil emitted N2O were -20.85 ± 2.8‰ and -8.85 ± 1.08‰, respectively, and were significantly different (p < 0.0001); while bulk 15N of plant and soil emitted N2O were -10.83 ± 3.33‰ and -22.56 ± 3.37‰, respectively and were similar (p = 0.06). In the current study, soil always acted as a source of N2O, while plants were both source and sink. Plant and soil N2O fluxes had significant positive exponential relationship with both soil and air temperature. Soil water-filled pore space (WFPS) had significant negative linear relationship with only soil N2O fluxes. Plant N2O fluxes had significant positive linear relationship with plant respiration rates and negative linear relationship with plant surface areas. Based on the relationship between plant respiration rates and N2O fluxes, we suggest that mitochondria are the possible sites of N2O formation in plant cells while the relationship between plant surface areas and N2O fluxes suggests that roots are the parts of its formation in natural and field conditions. Our results suggest that plants are a natural source of N2O even at field conditions and challenge a view that plants are a medium to transport soil-produced N2O into the atmosphere.


Subject(s)
Nitrous Oxide , Soil , Atmosphere , Nitrous Oxide/analysis , Plants , Water
2.
Front Plant Sci ; 11: 1177, 2020.
Article in English | MEDLINE | ID: mdl-32849729

ABSTRACT

Plants can produce and emit nitrous oxide (N2O), a potent greenhouse gas, into the atmosphere, and several field-based studies have concluded that this gas is emitted at substantial amounts. However, the exact mechanisms of N2O production in plant cells are unknown. Several studies have hypothesised that plants might act as a medium to transport N2O produced by soil-inhabiting microorganisms. Contrarily, aseptically grown plants and axenic algal cells supplied with nitrate (NO3) are reported to emit N2O, indicating that it is produced inside plant cells by some unknown physiological phenomena. In this study, the possible sites, mechanisms, and enzymes involved in N2O production in plant cells are discussed. Based on the experimental evidence from various studies, we determined that N2O can be produced from nitric oxide (NO) in the mitochondria of plants. NO, a signaling molecule, is produced through oxidative and reductive pathways in eukaryotic cells. During hypoxia and anoxia, NO3 in the cytosol is metabolised to produce nitrite (NO2), which is reduced to form NO via the reductive pathway in the mitochondria. Under low oxygen condition, NO formed in the mitochondria is further reduced to N2O by the reduced form of cytochrome c oxidase (CcO). This pathway is active only when cells experience hypoxia or anoxia, and it may be involved in N2O formation in plants and soil-dwelling animals, as reported previously by several studies. NO can be toxic at a high concentration. Therefore, the reduction of NO to N2O in the mitochondria might protect the integrity of the mitochondria, and thus, protect the cell from the toxicity of NO accumulation under hypoxia and anoxia. As NO3 is a major source of nitrogen for plants and all plants may experience hypoxic and anoxic conditions owing to soil environmental factors, a significant global biogenic source of N2O may be its formation in plants via the proposed pathway.

3.
Plants (Basel) ; 9(2)2020 Feb 02.
Article in English | MEDLINE | ID: mdl-32024218

ABSTRACT

: Paddies are a potential source of anthropogenic nitrous oxide (N2O) emission. In paddies, both the soil and the rice plants emit N2O into the atmosphere. The rice plant in the paddy is considered to act as a channel between the soil and the atmosphere for N2O emission. However, recent studies suggest that plants can also produce N2O, while the mechanism of N2O formation in plants is unknown. Consequently, the rice plant is only regarded as a channel for N2O produced by soil microorganisms. The emission of N2O by aseptically grown plants and the distinct dual isotopocule fingerprint of plant-emitted N2O, as reported by various studies, support the production of N2O in plants. Herein, we propose a potential pathway of N2O formation in the rice plant. In rice plants, N2O might be formed in the mitochondria via the nitrate-nitrite-nitric oxide (NO3-NO2-NO) pathway when the cells experience hypoxic or anoxic stress. The pathway is catalyzed by various enzymes, which have been described. So, N2O emitted from paddies might have two origins, namely soil microorganisms and rice plants. So, regarding rice plants only as a medium to transport the microorganism-produced N2O might be misleading in understanding the role of rice plants in the paddy. As rice cultivation is a major agricultural activity worldwide, not understanding the pathway of N2O formation in rice plants would create more uncertainties in the N2O budget.

SELECTION OF CITATIONS
SEARCH DETAIL
...