Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Neurophotonics ; 11(2): 024208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38559366

ABSTRACT

Significance: Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research. Aim: We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs. Approach: We quantified efficacy of LMOs through whole cell patch clamp recordings in HEK293 cells by determining coupling efficiency, the percentage of maximum LED induced photocurrent achieved with bioluminescent activation of an opsin. We confirmed key results by multielectrode array recordings in primary neurons. Results: Luciferase brightness and opsin sensitivity had the most impact on the efficacy of LMOs, and N-terminal fusions of luciferases to opsins performed better than C-terminal and multi-terminal fusions. Precise paring of luciferase emission and opsin absorption spectra appeared to be less critical. Conclusions: Whole cell patch clamp recordings allowed us to quantify the impact of different characteristics of LMOs on their function. Our results suggest that coupling brighter bioluminescent sources to more sensitive opsins will improve LMO function. As bioluminescent activation of opsins is most likely based on Förster resonance energy transfer, the most effective strategy for improving LMOs further will be molecular evolution of luciferase-fluorescent protein-opsin fusions.

2.
Neurophotonics ; 11(2): 021005, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38450294

ABSTRACT

Significance: Bioluminescent optogenetics (BL-OG) offers a unique and powerful approach to manipulate neural activity both opto- and chemogenetically using a single actuator molecule (a LuMinOpsin, LMO). Aim: To further enhance the utility of BL-OG by improving the efficacy of chemogenetic (bioluminescence-driven) LMO activation. Approach: We developed novel luciferases optimized for Förster resonance energy transfer when fused to the fluorescent protein mNeonGreen, generating bright bioluminescent (BL) emitters spectrally tuned to Volvox Channelrhodopsin 1 (VChR1). Results: A new LMO generated from this approach (LMO7) showed significantly stronger BL-driven opsin activation compared to previous and other new variants. We extensively benchmarked LMO7 against LMO3 (current standard) and found significantly stronger neuronal activity modulation ex vivo and in vivo, and efficient modulation of behavior. Conclusions: We report a robust new option for achieving multiple modes of control in a single actuator and a promising engineering strategy for continued improvement of BL-OG.

3.
Cell Rep ; 43(4): 113960, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38507407

ABSTRACT

GFRAL-expressing neurons actuate aversion and nausea, are targets for obesity treatment, and may mediate metformin effects by long-term GDF15-GFRAL agonism. Whether GFRAL+ neurons acutely regulate glucose and energy homeostasis is, however, underexplored. Here, we report that cell-specific activation of GFRAL+ neurons using a variety of techniques causes a torpor-like state, including hypothermia, the release of stress hormones, a shift from glucose to lipid oxidation, and impaired insulin sensitivity, glucose tolerance, and skeletal muscle glucose uptake but augmented glucose uptake in visceral fat. Metabolomic analysis of blood and transcriptomics of muscle and fat indicate alterations in ketogenesis, insulin signaling, adipose tissue differentiation and mitogenesis, and energy fluxes. Our findings indicate that acute GFRAL+ neuron activation induces endocrine and gluco- and thermoregulatory responses associated with nausea and torpor. While chronic activation of GFRAL signaling promotes weight loss in obesity, these results show that acute activation of GFRAL+ neurons causes hypothermia and hyperglycemia.


Subject(s)
Glucose , Hypothermia , Nausea , Neurons , Torpor , Animals , Neurons/metabolism , Nausea/metabolism , Hypothermia/metabolism , Torpor/physiology , Glucose/metabolism , Mice , Male , Muscle, Skeletal/metabolism , Mice, Inbred C57BL , Insulin/metabolism , Insulin Resistance , Signal Transduction
4.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045286

ABSTRACT

Significance: Luminopsins (LMOs) are bioluminescent-optogenetic tools with a luciferase fused to an opsin that allow bimodal control of neurons by providing both optogenetic and chemogenetic access. Determining which design features contribute to the efficacy of LMOs will be beneficial for further improving LMOs for use in research. Aim: We investigated the relative impact of luciferase brightness, opsin sensitivity, pairing of emission and absorption wavelength, and arrangement of moieties on the function of LMOs. Approach: We quantified efficacy of LMOs through whole cell patch clamp recordings in HEK293 cells by determining coupling efficiency, the percentage of maximum LED induced photocurrent achieved with bioluminescent activation of an opsin. We confirmed key results by multielectrode array (MEAs) recordings in primary neurons. Results: Luciferase brightness and opsin sensitivity had the most impact on the efficacy of LMOs, and N-terminal fusions of luciferases to opsins performed better than C-terminal and multi-terminal fusions. Precise paring of luciferase emission and opsin absorption spectra appeared to be less critical. Conclusions: Whole cell patch clamp recordings allowed us to quantify the impact of different characteristics of LMOs on their function. Our results suggest that coupling brighter bioluminescent sources to more sensitive opsins will improve LMO function. As bioluminescent activation of opsins is most likely based on Förster resonance energy transfer (FRET), the most effective strategy for improving LMOs further will be molecular evolution of luciferase-fluorescent protein-opsin fusions.

5.
bioRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37425735

ABSTRACT

SIGNIFICANCE: Bioluminescent optogenetics (BL-OG) offers a unique and powerful approach to manipulate neural activity both opto- and chemogenetically using a single actuator molecule (a LuMinOpsin, LMO). AIM: To further enhance the utility of BL-OG by improving the efficacy of chemogenetic (bioluminescence-driven) LMO activation. APPROACH: We developed novel luciferases optimized for Forster resonance energy transfer (FRET) when fused to the fluorescent protein mNeonGreen, generating bright bioluminescent (BL) emitters spectrally tuned to Volvox Channelrhodopsin 1 (VChR1). RESULTS: A new LMO generated from this approach (LMO7) showed significantly stronger BL-driven opsin activation compared to previous and other new variants. We extensively benchmarked LMO7 against LMO3 (current standard), and found significantly stronger neuronal activity modulation ex vivo and in vivo, and efficient modulation of behavior. CONCLUSIONS: We report a robust new option for achieving multiple modes of control in a single actuator, and a promising engineering strategy for continued improvement of BL-OG.

6.
Commun Biol ; 5(1): 33, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017641

ABSTRACT

Understanding percepts, engrams and actions requires methods for selectively modulating synaptic communication between specific subsets of interconnected cells. Here, we develop an approach to control synaptically connected elements using bioluminescent light: Luciferase-generated light, originating from a presynaptic axon terminal, modulates an opsin in its postsynaptic target. Vesicular-localized luciferase is released into the synaptic cleft in response to presynaptic activity, creating a real-time Optical Synapse. Light production is under experimenter-control by introduction of the small molecule luciferin. Signal transmission across this optical synapse is temporally defined by the presence of both the luciferin and presynaptic activity. We validate synaptic Interluminescence by multi-electrode recording in cultured neurons and in mice in vivo. Interluminescence represents a powerful approach to achieve synapse-specific and activity-dependent circuit control in vivo.


Subject(s)
Neurons/metabolism , Optogenetics/methods , Synapses/metabolism , Animals , Brain/cytology , Cells, Cultured , Luciferases/genetics , Luciferases/metabolism , Luciferins/metabolism , Male , Mice , Mice, Transgenic , Rats
7.
J Vis Exp ; (174)2021 08 04.
Article in English | MEDLINE | ID: mdl-34424228

ABSTRACT

Bioluminescence - light emitted by a luciferase enzyme oxidizing a small molecule substrate, a luciferin - has been used in vitro and in vivo to activate light-gated ion channels and pumps in neurons. While this bioluminescent optogenetics (BL-OG) approach confers a chemogenetic component to optogenetic tools, it is not limited to use in neuroscience. Rather, bioluminescence can be harnessed to activate any photosensory protein, thus enabling the manipulation of a multitude of light-mediated functions in cells. A variety of luciferase-luciferin pairs can be matched with photosensory proteins requiring different wavelengths of light and light intensities. Depending on the specific application, efficient light delivery can be achieved by using luciferase-photoreceptor fusion proteins or by simple co-transfection. Photosensory proteins based on light-dependent dimerization or conformational changes can be driven by bioluminescence to effect cellular processes from protein localization, regulation of intracellular signaling pathways to transcription. The protocol below details the experimental execution of bioluminescence activation in cells and organisms and describes the results using bioluminescence-driven recombinases and transcription factors. The protocol provides investigators with the basic procedures for carrying out bioluminescent optogenetics in vitro and in vivo. The described approaches can be further extended and individualized to a multitude of different experimental paradigms.


Subject(s)
Luminescent Measurements , Optogenetics , Luciferases/genetics , Neurons
8.
STAR Protoc ; 2(3): 100667, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34286295

ABSTRACT

Bioluminescent optogenetics (BL-OG) allows activation of photosensory proteins, such as opsins, by either fiberoptics or by administering a luciferin. BL-OG thus confers both optogenetic and chemogenetic access within the same genetically targeted neuron. This bimodality offers a powerful approach for non-invasive chemogenetic manipulation of neural activity during brain development and adult behaviors with standard optogenetic spatiotemporal precision. We detail protocols for bioluminescent stimulation of neurons in postnatally developing brain and its validation through bioluminescence imaging and electrophysiological recording in mice. For complete information on the use and execution of this protocol, please refer to Medendorp et al. (2021).


Subject(s)
Brain , Electrophysiology/methods , Neurons , Optogenetics/methods , Animals , Brain/cytology , Brain/diagnostic imaging , Brain/growth & development , Electrophysiological Phenomena/physiology , Luminescent Measurements , Mice , Neurons/chemistry , Neurons/metabolism , Optical Imaging , Patch-Clamp Techniques
9.
iScience ; 24(3): 102157, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33665575

ABSTRACT

In genetic and pharmacological models of neurodevelopmental disorders, and human data, neural activity is altered within the developing neocortical network. This commonality begs the question of whether early enhancement in excitation might be a common driver, across etiologies, of characteristic behaviors. We tested this concept by chemogenetically driving cortical pyramidal neurons during postnatal days 4-14. Hyperexcitation of Emx1-, but not dopamine transporter-, parvalbumin-, or Dlx5/6-expressing neurons, led to decreased social interaction and increased grooming activity in adult animals. In vivo optogenetic interrogation in adults revealed decreased baseline but increased stimulus-evoked firing rates of pyramidal neurons and impaired recruitment of inhibitory neurons. Slice recordings in adults from prefrontal cortex layer 5 pyramidal neurons revealed decreased intrinsic excitability and increased synaptic E/I ratio. Together these results support the prediction that enhanced pyramidal firing during development, in otherwise normal cortex, can selectively drive altered adult circuit function and maladaptive changes in behavior.

10.
Hippocampus ; 30(2): 101-113, 2020 02.
Article in English | MEDLINE | ID: mdl-31313871

ABSTRACT

Gamma oscillations (30-80 Hz) are fast network activity patterns frequently linked to cognition. They are commonly studied in hippocampal brain slices in vitro, where they can be evoked via pharmacological activation of various receptor families. One limitation of this approach is that neuronal activity is studied in a highly artificial extracellular fluid environment, as provided by artificial cerebrospinal fluid (aCSF). Here, we examine the influence of human cerebrospinal fluid (hCSF) on kainate-evoked and spontaneous gamma oscillations in mouse hippocampus. We show that hCSF, as compared to aCSF of matched electrolyte and glucose composition, increases the power of kainate-evoked gamma oscillations and induces spontaneous gamma activity in areas CA3 and CA1 that is reversed by washout. Bath application of atropine entirely abolished hCSF-induced gamma oscillations, indicating critical contribution from muscarinic acetylcholine receptor-mediated signaling. In separate whole-cell patch clamp recordings from rat hippocampus, hCSF increased theta resonance frequency and strength in pyramidal cells along with enhancement of h-current (Ih ) amplitude. We found no evidence of intrinsic gamma frequency resonance at baseline (aCSF) among fast-spiking interneurons, and this was not altered by hCSF. However, hCSF increased the excitability of fast-spiking interneurons, which likely contributed to gamma rhythmogenesis. Our findings show that hCSF promotes network gamma oscillations in the hippocampus in vitro and suggest that neuromodulators distributed in CSF could have significant influence on neuronal network activity in vivo.


Subject(s)
Cerebrospinal Fluid , Gamma Rhythm/drug effects , Hippocampus/drug effects , Interneurons/drug effects , Pyramidal Cells/drug effects , Animals , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Gamma Rhythm/physiology , Hippocampus/physiology , Humans , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Interneurons/physiology , Kainic Acid/pharmacology , Mice , Patch-Clamp Techniques , Pyramidal Cells/physiology
11.
J Neurochem ; 149(4): 452-470, 2019 05.
Article in English | MEDLINE | ID: mdl-30851210

ABSTRACT

It is well-known that the extracellular concentration of calcium affects neuronal excitability and synaptic transmission. Less is known about the physiological concentration of extracellular calcium in the brain. In electrophysiological brain slice experiments, the artificial cerebrospinal fluid traditionally contains relatively high concentrations of calcium (2-4 mM) to support synaptic transmission and suppress neuronal excitability. Using an ion-selective electrode, we determined the fraction of ionized calcium in healthy human cerebrospinal fluid to 1.0 mM of a total concentration of 1.2 mM (86%). Using patch-clamp and extracellular recordings in the CA1 region in acute slices of rat hippocampus, we then compared the effects of this physiological concentration of calcium with the commonly used 2 mM on neuronal excitability, synaptic transmission, and long-term potentiation (LTP) to examine the magnitude of changes in this range of extracellular calcium. Increasing the total extracellular calcium concentration from 1.2 to 2 mM decreased spontaneous action potential firing, induced a depolarization of the threshold, and increased the rate of both de- and repolarization of the action potential. Evoked synaptic transmission was approximately doubled, with a balanced effect between inhibition and excitation. In 1.2 mM calcium high-frequency stimulation did not result in any LTP, whereas a prominent LTP was observed at 2 or 4 mM calcium. Surprisingly, this inability to induce LTP persisted during blockade of GABAergic inhibition. In conclusion, an increase from the physiological 1.2 mM to 2 mM calcium in the artificial cerebrospinal fluid has striking effects on neuronal excitability, synaptic transmission, and the induction of LTP. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Read the Editorial Highlight for this article on page 435.


Subject(s)
Calcium/cerebrospinal fluid , Calcium/pharmacology , Cerebrospinal Fluid/chemistry , Pyramidal Cells/drug effects , Synaptic Transmission/drug effects , Adult , Animals , Female , Humans , Long-Term Potentiation/drug effects , Male , Middle Aged , Organ Culture Techniques , Pyramidal Cells/metabolism , Rats , Rats, Wistar
12.
Article in English | MEDLINE | ID: mdl-29459822

ABSTRACT

The cerebrospinal fluid (CSF) occupies the brain's ventricles and subarachnoid space and, together with the interstitial fluid (ISF), forms a continuous fluidic network that bathes all cells of the central nervous system (CNS). As such, the CSF is well positioned to actively distribute neuromodulators to neural circuits in vivo via volume transmission. Recent in vitro experimental work in brain slices and neuronal cultures has shown that human CSF indeed contains neuromodulators that strongly influence neuronal activity. Here we briefly summarize these new findings and discuss their potential relevance to neural circuits in health and disease.


Subject(s)
Cerebrospinal Fluid/metabolism , Neurons/metabolism , Animals , Brain/metabolism , Humans
14.
Front Cell Neurosci ; 10: 54, 2016.
Article in English | MEDLINE | ID: mdl-26973467

ABSTRACT

For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling.

15.
J Physiol ; 594(4): 937-52, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26634295

ABSTRACT

KEY POINTS: How the brain extracellular fluid influences the activity of GABAergic interneurons in vivo is not known. This issue is examined in the hippocampal brain slice by comparing GABAergic interneuron activity in human versus artificial cerebrospinal fluid. Human cerebrospinal fluid (hCSF) substantially increases the excitability of fast-spiking and non-fast-spiking CA1 interneurons. CA1 pyramidal cells are even more strongly excited by hCSF. The tonic excitation of pyramidal cells, in combination with an increased responsiveness of interneurons to excitatory input, is likely to promote the generation of synchronized network activity in the hippocampus. ABSTRACT: GABAergic interneurons intricately regulate the activity of hippocampal and neocortical networks. Their function in vivo is likely to be tuned by neuromodulatory substances in the brain extracellular fluid. However, in vitro investigations of GABAergic interneuron function do not account for such effects, as neurons are kept in artificial extracellular fluid. To examine the neuromodulatory influence of brain extracellular fluid on GABAergic activity, we recorded from fast-spiking and non-fast-spiking CA1 interneurons, as well as from pyramidal cells, in the presence of human cerebrospinal fluid (hCSF), using a matched artificial cerebrospinal fluid (aCSF) as control. We found that hCSF increased the frequency of spontaneous firing more than twofold in the two groups of interneurons, and more than fourfold in CA1 pyramidal cells. hCSF did not affect the resting membrane potential of CA1 interneurons but caused depolarization in pyramidal cells. The increased excitability of interneurons and pyramidal cells was accompanied by reductions in after-hyperpolarization amplitudes and a left-shift in the frequency-current relationships. Our results suggest that ambient concentrations of neuromodulators in the brain extracellular fluid powerfully influence the excitability of neuronal networks.


Subject(s)
Action Potentials , CA1 Region, Hippocampal/physiology , Cerebrospinal Fluid , GABAergic Neurons/physiology , Interneurons/physiology , Neurotransmitter Agents/pharmacology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , Female , GABAergic Neurons/drug effects , Humans , Interneurons/drug effects , Male , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Rats , Rats, Wistar
16.
J Physiol ; 593(1): 231-43, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25556798

ABSTRACT

KEY POINTS: The cerebrospinal fluid contains numerous neuromodulators at ambient levels but whether, and how, they affect the activity of central neurons is unknown. This study provides experimental evidence that human cerebrospinal fluid (hCSF) increases the excitability of hippocampal and neocortical pyramidal neurons. Hippocampal CA1 pyramidal neurons in hCSF displayed lowered firing thresholds, depolarized resting membrane potentials and reduced input resistance, mimicking properties of pyramidal neurons recorded in vivo. The excitability-increasing effect of hCSF on CA1 pyramidal neurons was entirely occluded by intracellular application of GTPγS, suggesting that neuromodulatory effects were mediated by G-protein coupled receptors. These results indicate that the CSF promotes spontaneous excitatory neuronal activity, and may help to explain observed differences in the activity of pyramidal neurons recorded in vivo and in vitro. The composition of brain extracellular fluid is shaped by a continuous exchange of substances between the cerebrospinal fluid (CSF) and interstitial fluid. The CSF is known to contain a wide range of endogenous neuromodulatory substances, but their collective influence on neuronal activity has been poorly investigated. We show here that replacing artificial CSF (aCSF), routinely used for perfusion of brain slices in vitro, with human CSF (hCSF) powerfully boosts spontaneous firing of CA1, CA3 and layer 5 pyramidal neurons in the rat brain slice. CA1 pyramidal neurons in hCSF display lowered firing thresholds, more depolarized resting membrane potentials and reduced input resistance, mimicking properties of pyramidal neurons recorded in vivo. The increased excitability of CA1 pyramidal neurons was completely occluded by intracellular application of GTPγS, suggesting that endogenous neuromodulators in hCSF act on G-protein coupled receptors to enhance excitability. We found no increase in spontaneous inhibitory synaptic transmission by hCSF, indicating a differential effect on glutamatergic and GABAergic neurons. Our findings highlight a previously unknown function of the CSF in promoting spontaneous excitatory activity, and may help to explain differences observed in the activity of pyramidal neurons recorded in vivo and in vitro.


Subject(s)
CA1 Region, Hippocampal/physiology , Cerebrospinal Fluid/physiology , Neocortex/physiology , Pyramidal Cells/physiology , Action Potentials , Animals , Female , Humans , In Vitro Techniques , Male , Rats, Wistar
17.
Exp Neurol ; 253: 154-64, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24378428

ABSTRACT

Previous work implicated the complement system in adult neurogenesis as well as elimination of synapses in the developing and injured CNS. In the present study, we used mice lacking the third complement component (C3) to elucidate the role the complement system plays in hippocampus-dependent learning and synaptic function. We found that the constitutive absence of C3 is associated with enhanced place and reversal learning in adult mice. Our findings of lower release probability at CA3-CA1 glutamatergic synapses in combination with unaltered overall efficacy of these synapses in C3 deficient mice implicate C3 as a negative regulator of the number of functional glutamatergic synapses in the hippocampus. The C3 deficient mice showed no signs of spontaneous epileptiform activity in the hippocampus. We conclude that C3 plays a role in the regulation of the number and function of glutamatergic synapses in the hippocampus and exerts negative effects on hippocampus-dependent cognitive performance.


Subject(s)
Cognition Disorders/genetics , Complement C3/deficiency , Hippocampus/pathology , Neurons/physiology , Synapses/physiology , Animals , Animals, Newborn , Avoidance Learning/physiology , Cognition Disorders/pathology , Disease Models, Animal , Dizocilpine Maleate/pharmacology , Electric Stimulation , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , GABA Antagonists/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/pathology , Nerve Net/physiopathology , Neurons/diagnostic imaging , Neurons/drug effects , Picrotoxin/pharmacology , Synapses/drug effects , Ultrasonography , Valine/analogs & derivatives , Valine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...