Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 173: 107650, 2023 03.
Article in English | MEDLINE | ID: mdl-36848829

ABSTRACT

Bioaccumulation is a key factor in understanding the potential ecotoxicity of substances. While there are well-developed models and methods to evaluate bioaccumulation of dissolved organic and inorganic substances, it is substantially more challenging to assess bioaccumulation of particulate contaminants such as engineered carbon nanomaterials (CNMs; carbon nanotubes (CNTs), graphene family nanomaterials (GFNs), and fullerenes) and nanoplastics. In this study, the methods used to evaluate bioaccumulation of different CNMs and nanoplastics are critically reviewed. In plant studies, uptake of CNMs and nanoplastics into the roots and stems was observed. For multicellular organisms other than plants, absorbance across epithelial surfaces was typically limited. Biomagnification was not observed for CNTs and GFNs but were observed for nanoplastics in some studies. However, the reported absorption in many nanoplastic studies may be a consequence of an experimental artifact, namely release of the fluorescent probe from the plastic particles and subsequent uptake. We identify that additional work is needed to develop analytical methods to provide robust, orthogonal methods that can measure unlabeled (e.g., without isotopic or fluorescent labels) CNMs and nanoplastics.


Subject(s)
Fullerenes , Graphite , Nanotubes, Carbon , Nanotubes, Carbon/toxicity , Microplastics , Bioaccumulation
3.
Environ Sci Nano ; 4(3): 747-766, 2017.
Article in English | MEDLINE | ID: mdl-28694970

ABSTRACT

As the production of carbon nanotubes (CNTs) expands, so might the potential for release into the environment. The possibility of bioaccumulation and toxicological effects has prompted research on their fate and potential ecological effects. For many organic chemicals, bioaccumulation properties are associated with lipid-water partitioning properties. However, predictions based on phase partitioning provide a poor fit for nanomaterials. In the absence of data on the bioaccumulation and other properties of CNTs, the Office of Pollution Prevention and Toxics (OPPT) within the US Environmental Protection Agency (EPA) subjects new pre-manufacture submissions for all nanomaterials to a higher-level review. We review the literature on CNT bioaccumulation by plants, invertebrates and non-mammalian vertebrates, summarizing 40 studies to improve the assessment of the potential for bioaccumulation. Because the properties and environmental fate of CNTs may be affected by type (single versus multiwall), functionalization, and dosing technique, the bioaccumulation studies were reviewed with respect to these factors. Absorption into tissues and elimination behaviors across species were also investigated. All of the invertebrate and non-mammalian vertebrate studies showed little to no absorption of the material from the gut tract to other tissues. These findings combined with the lack of biomagnification in the CNT trophic transfer studies conducted to date suggest that the overall risk of trophic transfer is low. Based on the available data, in particular the low levels of absorption of CNTs across epithelial surfaces, CNTs generally appear to form a class that should be designated as a low concern for bioaccumulation.

4.
Proc Natl Acad Sci U S A ; 111(14): 5271-6, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24639512

ABSTRACT

Recent research on ocean health has found large predator abundance to be a key element of ocean condition. Fisheries can impact large predator abundance directly through targeted capture and indirectly through incidental capture of nontarget species or bycatch. However, measures of the global nature of bycatch are lacking for air-breathing megafauna. We fill this knowledge gap and present a synoptic global assessment of the distribution and intensity of bycatch of seabirds, marine mammals, and sea turtles based on empirical data from the three most commonly used types of fishing gears worldwide. We identify taxa-specific hotspots of bycatch intensity and find evidence of cumulative impacts across fishing fleets and gears. This global map of bycatch illustrates where data are particularly scarce--in coastal and small-scale fisheries and ocean regions that support developed industrial fisheries and millions of small-scale fishers--and identifies fishing areas where, given the evidence of cumulative hotspots across gear and taxa, traditional species or gear-specific bycatch management and mitigation efforts may be necessary but not sufficient. Given the global distribution of bycatch and the mitigation success achieved by some fleets, the reduction of air-breathing megafauna bycatch is both an urgent and achievable conservation priority.


Subject(s)
Birds , Mammals , Marine Biology , Turtles , Animals , Biodiversity
5.
PLoS One ; 5(12): e14451, 2010 Dec 29.
Article in English | MEDLINE | ID: mdl-21206903

ABSTRACT

Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km²) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional 'hotspots' of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries.


Subject(s)
Conservation of Natural Resources , Fisheries , Animals , Ecosystem , Environmental Monitoring , Fishes , Geography , Oceans and Seas , Population Dynamics , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...