Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Hortic Res ; 11(2): uhad289, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38487295

ABSTRACT

Two decades have passed since the strawberry (Fragaria x ananassa) disease caused by Macrophomina phaseolina, a necrotrophic soilborne fungal pathogen, began surfacing in California, Florida, and elsewhere. This disease has since become one of the most common causes of plant death and yield losses in strawberry. The Macrophomina problem emerged and expanded in the wake of the global phase-out of soil fumigation with methyl bromide and appears to have been aggravated by an increase in climate change-associated abiotic stresses. Here we show that sources of resistance to this pathogen are rare in gene banks and that the favorable alleles they carry are phenotypically unobvious. The latter were exposed by transgressive segregation and selection in populations phenotyped for resistance to Macrophomina under heat and drought stress. The genetic gains were immediate and dramatic. The frequency of highly resistant individuals increased from 1% in selection cycle 0 to 74% in selection cycle 2. Using GWAS and survival analysis, we found that phenotypic selection had increased the frequencies of favorable alleles among 10 loci associated with resistance and that favorable alleles had to be accumulated among four or more of these loci for an individual to acquire resistance. An unexpectedly straightforward solution to the Macrophomina disease resistance breeding problem emerged from our studies, which showed that highly resistant cultivars can be developed by genomic selection per se or marker-assisted stacking of favorable alleles among a comparatively small number of large-effect loci.

2.
Nat Plants ; 9(11): 1890-1901, 2023 11.
Article in English | MEDLINE | ID: mdl-37884654

ABSTRACT

Plant survival depends on dynamic stress-response pathways in changing environments. To uncover pathway components, we screened an ethyl methanesulfonate-mutagenized transgenic line containing a stress-inducible luciferase construct and isolated a constitutive expression mutant. The mutant is the result of an amino acid substitution in the seventh subunit of the hetero-octameric conserved oligomeric Golgi (COG) complex of Arabidopsis thaliana. Complementation studies verified the Golgi localization of cog7, and stress tests established accelerated dark-induced carbon deprivation/senescence of the mutant compared with wild-type plants. Multiomics and biochemical analyses revealed accelerated induction of protein ubiquitination and autophagy, and a counterintuitive increased protein N-glycosylation in senescencing cog7 relative to wild-type. A revertant screen using the overexpressor (FOX)-hunting system established partial, but notable rescue of cog7 phenotypes by COG5 overexpression, and conversely premature senescence in reduced COG5 expressing lines. These findings identify COG-imposed Golgi functional integrity as a main player in ensuring cellular survival under energy-limiting conditions.


Subject(s)
Adaptor Proteins, Vesicular Transport , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Glycosylation
3.
Plant Genome ; 16(1): e20275, 2023 03.
Article in English | MEDLINE | ID: mdl-36480594

ABSTRACT

The development of strawberry (Fragaria × ananassa Duchesne ex Rozier) cultivars resistant to Phytophthora crown rot (PhCR), a devastating disease caused by the soil-borne pathogen Phytophthora cactorum (Lebert & Cohn) J. Schröt., has been challenging partly because the resistance phenotypes are quantitative and only moderately heritable. To develop deeper insights into the genetics of resistance and build the foundation for applying genomic selection, a genetically diverse training population was screened for resistance to California isolates of the pathogen. Here we show that genetic gains in breeding for resistance to PhCR have been negligible (3% of the cultivars tested were highly resistant and none surpassed early 20th century cultivars). Narrow-sense genomic heritability for PhCR resistance ranged from 0.41 to 0.75 among training population individuals. Using multivariate genome-wide association studies (GWAS), we identified a large-effect locus (predicted to be RPc2) that explained 43.6-51.6% of the genetic variance, was necessary but not sufficient for resistance, and was associated with calcium channel and other candidate genes with known plant defense functions. The addition of underutilized gene bank resources to our training population doubled additive genetic variance, increased the accuracy of genomic selection, and enabled the discovery of individuals carrying favorable alleles that are either rare or not present in modern cultivars. The incorporation of an RPc2-associated single-nucleotide polymorphism (SNP) as a fixed effect increased genomic prediction accuracy from 0.40 to 0.55. Finally, we show that parent selection using genomic-estimated breeding values, genetic variances, and cross usefulness holds promise for enhancing resistance to PhCR in strawberry.


Subject(s)
Fragaria , Phytophthora , Fragaria/genetics , Phytophthora/genetics , Genome-Wide Association Study , Plant Breeding , Genomics
4.
Theor Appl Genet ; 135(6): 2121-2145, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35583656

ABSTRACT

KEY MESSAGE: Several Fusarium wilt resistance genes were discovered, genetically and physically mapped, and rapidly deployed via marker-assisted selection to develop cultivars resistant to Fusarium oxysporum f. sp. fragariae, a devastating soil-borne pathogen of strawberry. Fusarium wilt, a soilborne disease caused by Fusarium oxysporum f. sp. fragariae, poses a significant threat to strawberry (Fragaria [Formula: see text] ananassa) production in many parts of the world. This pathogen causes wilting, collapse, and death in susceptible genotypes. We previously identified a dominant gene (FW1) on chromosome 2B that confers resistance to race 1 of the pathogen, and hypothesized that gene-for-gene resistance to Fusarium wilt was widespread in strawberry. To explore this, a genetically diverse collection of heirloom and modern cultivars and octoploid ecotypes were screened for resistance to Fusarium wilt races 1 and 2. Here, we show that resistance to both races is widespread in natural and domesticated populations and that resistance to race 1 is conferred by partially to completely dominant alleles among loci (FW1, FW2, FW3, FW4, and FW5) found on three non-homoeologous chromosomes (1A, 2B, and 6B). The underlying genes have not yet been cloned and functionally characterized; however, plausible candidates were identified that encode pattern recognition receptors or other proteins known to confer gene-for-gene resistance in plants. High-throughput genotyping assays for SNPs in linkage disequilibrium with FW1-FW5 were developed to facilitate marker-assisted selection and accelerate the development of race 1 resistant cultivars. This study laid the foundation for identifying the genes encoded by FW1-FW5, in addition to exploring the genetics of resistance to race 2 and other races of the pathogen, as a precaution to averting a Fusarium wilt pandemic.


Subject(s)
Fragaria , Fusarium , Chromosomes , Fragaria/genetics , Plant Diseases/genetics
5.
Elife ; 112022 05 26.
Article in English | MEDLINE | ID: mdl-35617122

ABSTRACT

Plant genomes encode hundreds of secreted peptides; however, relatively few have been characterised. We report here an uncharacterised, stress-induced family of plant signalling peptides, which we call CTNIPs. Based on the role of the common co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) in CTNIP-induced responses, we identified in Arabidopsis thaliana the orphan receptor kinase HAESA-LIKE 3 (HSL3) as the CTNIP receptor via a proteomics approach. CTNIP-binding, ligand-triggered complex formation with BAK1, and induced downstream responses all involve HSL3. Notably, the HSL3-CTNIP signalling module is evolutionarily conserved amongst most extant angiosperms. The identification of this novel signalling module will further shed light on the diverse functions played by plant signalling peptides and will provide insights into receptor-ligand co-evolution.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids , Gene Expression Regulation, Plant , Ligands , Perception , Plant Immunity , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Sorting Signals
6.
Curr Biol ; 32(2): 488-495.e5, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34919806

ABSTRACT

Soil availability of inorganic ortho-phosphate (PO43-, Pi) is a key determinant of plant growth and fitness.1 Plants regulate the capacity of their roots to take up inorganic phosphate by adapting the abundance of H+-coupled phosphate transporters of the PHOSPHATE TRANSPORTER 1 (PHT1) family2 at the plasma membrane (PM) through transcriptional and post-translational changes driven by the genetic network of the phosphate starvation response (PSR).3-8 Increasing evidence also shows that plants integrate immune responses to alleviate phosphate starvation stress through the association with beneficial microbes.9-11 Whether and how such phosphate transport is regulated upon activation of immune responses is yet uncharacterized. To address this question, we first developed quantitative assays based on changes in the electrical PM potential to measure active Pi transport in roots in real time. By inserting micro-electrodes into bulging root hairs, we were able to determine key characteristics of phosphate transport in intact Arabidopsis thaliana (hereafter Arabidopsis) seedlings. The fast Pi-induced depolarization observed was dependent on the activity of the major phosphate transporter PHT1;4. Notably, we observed that this PHT1;4-mediated phosphate uptake is repressed upon activation of pattern-triggered immunity. This inhibition depended on the receptor-like cytoplasmic kinases BOTRYTIS-INDUCED KINASE 1 (BIK1) and PBS1-LIKE KINASE 1 (PBL1), which both phosphorylated PHT1;4. As a corollary to this negative regulation of phosphate transport by immune signaling, we found that PHT1;4-mediated phosphate uptake normally negatively regulates anti-bacterial immunity in roots. Collectively, our results reveal a mechanism linking plant immunity and phosphate homeostasis, with BIK1/PBL1 providing a molecular integration point between these two important pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Plant Roots/metabolism
7.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34531323

ABSTRACT

Receptor kinases (RKs) are fundamental for extracellular sensing and regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) are primarily peptide receptors that regulate responses to myriad internal and external stimuli. Phosphorylation of LRR-RK cytoplasmic domains is among the earliest responses following ligand perception, and reciprocal transphosphorylation between a receptor and its coreceptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in antibacterial immunity. These results reveal a noncatalytic role for EFR in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RKs with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor, which could initiate signaling either allosterically or through driving the dissociation of negative regulators of the complex.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Immunity/physiology , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , Arabidopsis/genetics , Cell Membrane/metabolism , Gene Expression , Immunity, Innate/genetics , Ligands , Peptide Elongation Factor Tu/metabolism , Phosphorylation , Plant Immunity/genetics , Plants, Genetically Modified/metabolism , Protein Binding , Protein Domains , Protein Kinases/metabolism , Protein Serine-Threonine Kinases , Signal Transduction/physiology
8.
Curr Biol ; 31(12): R796-R798, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34157265

ABSTRACT

Plant immunity has long been divided into two 'tiers', involving cell-surface versus intracellular immune receptors. Although both systems can induce similar diagnostic responses, they have been considered independent pathways. Recent work challenges this view, showing a striking requirement for both recognition layers to achieve maximum immune output.


Subject(s)
Receptors, Pattern Recognition , Signal Transduction , Plant Immunity , Plants , Receptors, Immunologic
9.
Nat Plants ; 7(5): 579-586, 2021 05.
Article in English | MEDLINE | ID: mdl-33723429

ABSTRACT

Plants tailor their metabolism to environmental conditions, in part through the recognition of a wide array of self and non-self molecules. In particular, the perception of microbial or plant-derived molecular patterns by cell-surface-localized pattern recognition receptors (PRRs) induces pattern-triggered immunity, which includes massive transcriptional reprogramming1. An increasing number of plant PRRs and corresponding ligands are known, but whether plants tune their immune outputs to patterns of different biological origins or of different biochemical natures remains mostly unclear. Here, we performed a detailed transcriptomic analysis in an early time series focused to study rapid-signalling transcriptional outputs induced by well-characterized patterns in the model plant Arabidopsis thaliana. This revealed that the transcriptional responses to diverse patterns (independent of their origin, biochemical nature or type of PRR) are remarkably congruent. Moreover, many of the genes most rapidly and commonly upregulated by patterns are also induced by abiotic stresses, suggesting that the early transcriptional response to patterns is part of the plant general stress response (GSR). As such, plant cells' response is in the first instance mostly to danger. Notably, the genetic impairment of the GSR reduces pattern-induced antibacterial immunity, confirming the biological relevance of this initial danger response. Importantly, the definition of a small subset of 'core immunity response' genes common and specific to pattern response revealed the function of previously uncharacterized GLUTAMATE RECEPTOR-LIKE (GLR) calcium-permeable channels in immunity. This study thus illustrates general and unique properties of early immune transcriptional reprogramming and uncovers important components of plant immunity.


Subject(s)
Arabidopsis/immunology , Gene Expression Regulation, Plant/immunology , Arabidopsis/metabolism , Gene Expression Profiling , Plant Diseases/immunology , Receptors, Pattern Recognition/metabolism , Transcription, Genetic
10.
Bio Protoc ; 10(20): e3799, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33659453

ABSTRACT

Transcriptome analysis can provide clues to biological processes affected in different genetic backgrounds or/and under various conditions. The price of RNA sequencing (RNA-seq) has decreased enough so that medium- to large-scale transcriptome analyses in a range of conditions are feasible. However, the price and variety of options for library preparation of RNA-seq can still be daunting to those who would like to use RNA-seq for their first time or for a single experiment. Among the criteria for selecting a library preparation protocol are the method of RNA isolation, nucleotide fragmentation to obtain desired size range, and library indexing to pool sequencing samples for multiplexing. Here, we present a high-quality and a high-throughput option for preparing libraries from polyadenylated mRNA for transcriptome analysis. Both high-quality and high-throughput protocol options include steps of mRNA enrichment through magnetic bead-enabled precipitation of the poly-A tail, cDNA synthesis, and then fragmentation and adapter addition simultaneously through Tn5-mediated 'tagmentation'. All steps of the protocols have been validated with Arabidopsis thaliana leaf and seedling tissues and streamlined to work together, with minimal cost in money and time, thus intended to provide a beginner-friendly start-to-finish RNA-seq library preparation for transcriptome analysis.

11.
Mol Plant ; 10(11): 1400-1416, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28965830

ABSTRACT

Plants have evolved tightly regulated signaling networks to respond and adapt to environmental perturbations, but the nature of the signaling hub(s) involved have remained an enigma. We have previously established that methylerythritol cyclodiphosphate (MEcPP), a precursor of plastidial isoprenoids and a stress-specific retrograde signaling metabolite, enables cellular readjustments for high-order adaptive functions. Here, we specifically show that MEcPP promotes two Brassicaceae-specific traits, namely endoplasmic reticulum (ER) body formation and induction of indole glucosinolate (IGs) metabolism selectively, via transcriptional regulation of key regulators NAI1 for ER body formation and MYB51/122 for IGs biosynthesis). The specificity of MEcPP is further confirmed by the lack of induction of wound-inducible ER body genes as well as IGs by other altered methylerythritol phosphate pathway enzymes. Genetic analyses revealed MEcPP-mediated COI1-dependent induction of these traits. Moreover, MEcPP signaling integrates the biosynthesis and hydrolysis of IGs through induction of nitrile-specifier protein1 and reduction of the suppressor, ESM1, and production of simple nitriles as the bioactive end product. The findings position the plastidial metabolite, MEcPP, as the initiation hub, transducing signals to adjust the activity of hard-wired gene circuitry to expand phytochemical diversity and alter the associated subcellular structure required for functionality of the secondary metabolites, thereby tailoring plant stress responses.


Subject(s)
Glucosinolates/metabolism , Plastids/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Signal Transduction/genetics , Signal Transduction/physiology
12.
Plant J ; 91(1): 70-84, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28370892

ABSTRACT

To maintain homeostasis in the face of intrinsic and extrinsic insults, cells have evolved elaborate quality control networks to resolve damage at multiple levels. Interorganellar communication is a key requirement for this maintenance, however the underlying mechanisms of this communication have remained an enigma. Here we integrate the outcome of transcriptomic, proteomic, and metabolomics analyses of genotypes including ceh1, a mutant with constitutively elevated levels of both the stress-specific plastidial retrograde signaling metabolite methyl-erythritol cyclodiphosphate (MEcPP) and the defense hormone salicylic acid (SA), as well as the high MEcPP but SA deficient genotype ceh1/eds16, along with corresponding controls. Integration of multi-omic analyses enabled us to delineate the function of MEcPP from SA, and expose the compartmentalized role of this retrograde signaling metabolite in induction of distinct but interdependent signaling cascades instrumental in adaptive responses. Specifically, here we identify strata of MEcPP-sensitive stress-response cascades, among which we focus on selected pathways including organelle-specific regulation of jasmonate biosynthesis; simultaneous induction of synthesis and breakdown of SA; and MEcPP-mediated alteration of cellular redox status in particular glutathione redox balance. Collectively, these integrated multi-omic analyses provided a vehicle to gain an in-depth knowledge of genome-metabolism interactions, and to further probe the extent of these interactions and delineate their functional contributions. Through this approach we were able to pinpoint stress-mediated transcriptional and metabolic signatures and identify the downstream processes modulated by the independent or overlapping functions of MEcPP and SA in adaptive responses.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cyclopentanes/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Glutathione/metabolism , Metabolomics/methods , Oxylipins/metabolism , Proteomics/methods , Salicylic Acid/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Transcriptome/genetics
13.
Proc Natl Acad Sci U S A ; 113(31): 8855-60, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27432993

ABSTRACT

The general stress response (GSR) is an evolutionarily conserved rapid and transient transcriptional reprograming of genes central for transducing environmental signals into cellular responses, leading to metabolic and physiological readjustments to cope with prevailing conditions. Defining the regulatory components of the GSR will provide crucial insight into the design principles of early stress-response modules and their role in orchestrating master regulators of adaptive responses. Overaccumulation of methylerythritol cyclodiphosphate (MEcPP), a bifunctional chemical entity serving as both a precursor of isoprenoids produced by the plastidial methylerythritol phosphate (MEP) pathway and a stress-specific retrograde signal, in ceh1 (constitutively expressing hydroperoxide lyase1)-mutant plants leads to large-scale transcriptional alterations. Bioinformatic analyses of microarray data in ceh1 plants established the overrepresentation of a stress-responsive cis element and key GSR marker, the rapid stress response element (RSRE), in the promoters of robustly induced genes. ceh1 plants carrying an established 4×RSRE:Luciferase reporter for monitoring the GSR support constitutive activation of the response in this mutant background. Genetics and pharmacological approaches confirmed the specificity of MEcPP in RSRE induction via the transcription factor CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3), in a calcium-dependent manner. Moreover, CAMTA3-dependent activation of IRE1a (inositol-requiring protein-1) and bZIP60 (basic leucine zipper 60), two RSRE containing unfolded protein-response genes, bridges MEcPP-mediated GSR induction to the potentiation of protein-folding homeostasis in the endoplasmic reticulum. These findings introduce the notion of transcriptional regulation by a key plastidial retrograde signaling metabolite that induces nuclear GSR, thereby offering a window into the role of interorgannellar communication in shaping cellular adaptive responses.


Subject(s)
Arabidopsis Proteins/metabolism , Erythritol/analogs & derivatives , Gene Expression Regulation, Plant , Plastids/metabolism , Stress, Physiological , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Calcium/metabolism , Enzymes/genetics , Enzymes/metabolism , Erythritol/metabolism , Erythritol/pharmacology , Gene Expression Profiling/methods , Gene Ontology , Mutation , Plant Growth Regulators/metabolism , Response Elements/genetics , Sugar Phosphates/metabolism , Transcription Factors/genetics , Unfolded Protein Response/genetics
14.
Plant Sci ; 250: 165-177, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27457993

ABSTRACT

Adaptation to fluctuating environmental conditions is a universal feature of plant life, governed by fundamental mechanisms optimizing resource allocation. This balance is achieved in part through tightly regulated communication networks among growth and stress response signaling pathways. Understanding the communication modules between brassinosteroids (BRs), the ubiquitous hormones known to control growth and stress adaptation, and the general stress response (GSR), a rapid and transient transcriptional output in response to perturbations, provides an optimal platform to unravel new facet(s) of plant stress adaptation. Here, we explore communication facets of BR with GSR via in planta quantification of the GSR in Arabidopsis expressing luciferase driven by a functional GSR cis-element, the Rapid Stress Response Element (4xRSRE:LUC). We establish that application of exogenous BR suppresses microbe-associated molecular pattern-activated GSR, but enhances the wound-triggered GSR. The enhanced wound-activated GSR in BR-treated plants results in a greater wound-induced resistance to Botrytis cinerea. A combination of molecular genetics using BR signaling mutants and application of an activator of BR signaling, bikinin, confirms these results and places the chief point of BR-GSR interaction downstream of potential membrane receptor circuitry. These results support a multi-modular interaction between BRs and stress signaling, instrumental in customizing stimulus-specific responses in Arabidopsis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Brassinosteroids/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Response Elements , Signal Transduction , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Stress, Physiological
15.
J Exp Bot ; 67(5): 1557-66, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26733689

ABSTRACT

The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context.


Subject(s)
Arabidopsis/metabolism , Cyclopentanes/metabolism , Erythritol/analogs & derivatives , Oxylipins/metabolism , Plastids/metabolism , Salicylic Acid/metabolism , Signal Transduction/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Erythritol/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/pharmacology , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Models, Biological , Mutation/genetics , Plastids/drug effects
16.
J Integr Plant Biol ; 58(2): 119-26, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26108530

ABSTRACT

Plants have evolved intricate signaling cascades to rapidly and effectively respond to biotic and abiotic challenges. The precise timing of these responses enables optimal resource reallocation to maintain the balance between stress adaptation and growth. Thus, an in-depth understanding of the immediate and long-term mechanisms regulating resource allocation is critical in deciphering how plants withstand environmental challenges. To date however, understanding of this tradeoff has focused on the amplitude of long-term responses, rather than the timing of rapid stress responses. This review presents current knowledge on kinetics of secondary messengers involved in regulation of rapid and general stress responses, followed by rapid stress responsive transduction machinery, and finally the transcriptional response of a functional general stress responsive cis-element. Within this context we discuss the role of timing of initial peak activation and later oscillating peak responses, and explore hormonal and stress signaling crosstalk confounding greater understanding of these cascades.


Subject(s)
Plants/metabolism , Stress, Physiological , Models, Biological , Plant Growth Regulators/metabolism , Plants/genetics , Signal Transduction , Time Factors
17.
Bio Protoc ; 5(13)2015 Jul 05.
Article in English | MEDLINE | ID: mdl-27446980

ABSTRACT

Unbiased screening approaches are powerful tools enabling identification of novel players in biological processes. Chemical genetic screening refers to the technique of using a reporter response, such as expression of luciferase driven by a promoter of interest, to discover small molecules that affect a given process when applied to plants. These chemicals then act as tools for identification of regulatory components that could not otherwise be detected by forward genetic screens due to gene family redundancy or mutant lethality. This protocol describes a chemical genetic screen using Arabidopsis thaliana seedlings, which has led to recognition of novel players in the plant general stress response.

18.
Plant Physiol ; 166(2): 988-96, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25157030

ABSTRACT

To survive environmental challenges, plants have evolved tightly regulated response networks, including a rapid and transient general stress response (GSR), followed by well-studied stress-specific responses. The mechanisms underpinning the GSR have remained elusive, but a functional cis-element, the rapid stress response element (RSRE), is known to confer transcription of GSR genes rapidly (5 min) and transiently (peaking 90-120 min after stress) in vivo. To investigate signal transduction events in the GSR, we used a 4xRSRE:LUCIFERASE reporter in Arabidopsis (Arabidopsis thaliana), employing complementary approaches of forward and chemical genetic screens, and identified components regulating peak time versus amplitude of RSRE activity. Specifically, we identified a mutant in CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 (CAMTA3) with reduced RSRE activation, verifying this transcription factor's role in activation of the RSRE-mediated GSR. Furthermore, we isolated a mutant in MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) KINASE KINASE1 (mekk1-5), which displays increased basal and an approximately 60-min earlier peak of wound-induced RSRE activation. The double mekk1/camta3 mutant positioned CAMTA3 downstream of MEKK1 and verified their distinct roles in GSR regulation. mekk1-5 displays programmed cell death and overaccumulates reactive oxygen species and salicylic acid, hallmarks of the hypersensitive response, suggesting that the hypersensitive response may play a role in the RSRE phenotype in this mutant. In addition, chemical inhibition studies suggest that the MAPK network is required for the rapid peak of the RSRE response, distinguishing the impact of chronic (mekk1-5) from transient (chemical inhibition) loss of MAPK signaling. Collectively, these results reveal underlying regulatory components of the plant GSR and further define their distinct roles in the regulation of this key biological process.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , MAP Kinase Kinase Kinase 1/metabolism , Signal Transduction , Trans-Activators/metabolism , Arabidopsis/enzymology , Arabidopsis/metabolism , MAP Kinase Kinase Kinase 1/genetics , Mutation
19.
Plant Mol Biol ; 86(1-2): 201-14, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25008153

ABSTRACT

Peroxisomes are organelles that catabolize fatty acids and compartmentalize other oxidative metabolic processes in eukaryotes. Using a forward-genetic screen designed to recover severe peroxisome-defective mutants, we isolated a viable allele of the peroxisome biogenesis gene PEX13 with striking peroxisomal defects. The pex13-4 mutant requires an exogenous source of fixed carbon for pre-photosynthetic development and is resistant to the protoauxin indole-3-butyric acid. Delivery of peroxisome-targeted matrix proteins depends on the PEX5 receptor docking with PEX13 at the peroxisomal membrane, and we found severely reduced import of matrix proteins and less organelle-associated PEX5 in pex13-4 seedlings. Moreover, pex13-4 physiological and molecular defects were partially ameliorated when PEX5 was overexpressed, suggesting that PEX5 docking is partially compromised in this mutant and can be improved by increasing PEX5 levels. Because previously described Arabidopsis pex13 alleles either are lethal or confer only subtle defects, the pex13-4 mutant provides valuable insight into plant peroxisome receptor docking and matrix protein import.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Peroxisomes/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/analysis , Molecular Sequence Data , Mutation, Missense , Peroxins , Peroxisome-Targeting Signal 1 Receptor , Peroxisomes/ultrastructure , Protein Structure, Tertiary , Protein Transport/genetics , Receptors, Cytoplasmic and Nuclear/analysis , Receptors, Cytoplasmic and Nuclear/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...