Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38546760

ABSTRACT

INTRODUCTION: Benzotriazoles and benzothiazoles (BTs) are high-production volume chemicals as well as widely distributed emerging pollutants with potential health risk. However, information about human exposure to BTs and associated health outcomes is limited. OBJECTIVE: We aimed to characterise exposure to BTs among Czech men, including possible occupational exposure among firefighters, its predictors, and its associations with liver function, serum lipids and oxidative stress. METHODS: 165 participants (including 110 firefighters) provided urine and blood samples that were used to quantify the urinary levels of 8 BTs (high-performance liquid chromatography-tandem mass spectrometry), and 4 liver enzymes, cholesterol, low-density lipoprotein, and 8-hydroxy-2'-deoxyguanosine. Linear regression was used to assess associations with population characteristics and biomarkers of liver function, serum lipids and oxidative stress. Regression models were adjusted for potential confounding variables and false discovery rate procedure was applied to account for multiplicity. RESULTS: The BTs ranged from undetected up to 46.8 ng/mL. 2-hydroxy-benzothiazole was the most predominant compound (detection frequency 83%; median 1.95 ng/mL). 1-methyl-benzotriazole (1M-BTR) was measured in human samples for the first time, with a detection frequency 77% and median 1.75 ng/mL. Professional firefighters had lower urinary 1M-BTR compared to non-firefighters. Urinary 1M-BTR was associated with levels of γ-glutamyl transferase (ß = - 17.54%; 95% CI: - 26.127, - 7.962). CONCLUSION: This is the first study to investigate BT exposure in Central Europe, including potentially exposed firefighters. The findings showed a high prevalence of BTs in the study population, the relevance of 1M-BTR as a new biomarker of exposure, and an urgent need for further research into associated adverse health outcomes.

2.
Front Public Health ; 11: 1235496, 2023.
Article in English | MEDLINE | ID: mdl-37780438

ABSTRACT

Introduction: The exposures to hazardous antineoplastic drugs (AD) represent serious risks for health care personnel but the exposure limits are not commonly established because of the no-threshold effects (genotoxic action, carcinogenicity) of many ADs. In this study, we discussed and derived practically applicable technical guidance values (TGV) suitable for management of AD risks. Methods: The long-term monitoring of surface contamination by eight ADs was performed in pharmacies and hospitals in the Czech Republic and Slovak Republic in 2008-2021; in total 2,223 unique samples were collected repeatedly in 48 facilities. AD contamination was studied by LC-MS/MS for cyclophosphamide, ifosfamide, methotrexate, irinotecan, paclitaxel, 5-fluorouracil and gemcitabine and by ICP-MS for total Pt as a marker of platinum-based ADs. Results: The study highlighted importance of exposure biomarkers like 5-fluorouracil and especially carcinogenic and persistent cyclophosphamide, which should be by default included in monitoring along with other ADs. Highly contaminated spots like interiors of laminar biological safety cabinets represent a specific issue, where monitoring of contamination does not bring much added value, and prevention of staff and separated cleaning procedures should be priority. Rooms and surfaces in health care facilities that should be virtually free of ADs (e.g., offices, kitchenettes, daily rooms) were contaminated with lower frequency and concentrations but any contamination in these areas should be carefully examined. Discussion and conclusions: For all other working places, i.e., majority of areas in pharmacies and hospitals, where ADs are being prepared, packaged, stored, transported, or administered to patients, the study proposes a generic TGV of 100 pg/cm2. The analysis of long-term monitoring data of multiple ADs showed that the exceedance of one TGV can serve as an indicator and trigger for improvement of working practices contributing thus to minimizing of unintended exposures and creating a safe work environment.


Subject(s)
Antineoplastic Agents , Occupational Exposure , Pharmacies , Humans , Slovakia , Chromatography, Liquid , Czech Republic , Occupational Exposure/analysis , Tandem Mass Spectrometry , Cyclophosphamide/analysis , Fluorouracil/analysis , Hospitals
3.
Int J Hyg Environ Health ; 250: 114175, 2023 05.
Article in English | MEDLINE | ID: mdl-37105016

ABSTRACT

Oxidative stress is an important toxicity and genotoxicity mechanism of many chronic adverse health outcomes. This study developed a sensitive extraction method for urine matrix (based on lyophilization, without the need for pre-cleaning by solid phase extraction), coupled to LC-MS/MS analysis of the biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG). The methodology was validated in urine samples from a cohort of Spanish pregnant women collected during the first, second and third trimester of pregnancy, and urine samples collected within 24 h after delivery (n = 85). A detection and quantification limit of 0.01 and 0.05 µg/L, respectively, were established. The median 8-OHdG concentration was 2.18 µg/L (range 0.33-7.79); and the corresponding creatinine-adjusted concentrations ranged from 1.04 to 13.12 with median of 4.48 µg 8-OHdG/g creatinine. The concentrations of non-adjusted 8-OHdG significantly decreased (p < 0.05) in the 3rd trimester and post-delivery urine samples when compared to the 1st trimester levels. 8-OHdG concentrations were further studied in placenta samples matching the same urine samples (n = 26), with a median value of 1.3 ng 8-OHdG/g of tissue. Placental 8-OHdG concentrations were correlated with urinary levels of non-adjusted 8-OHdG in the 3rd trimester. Considering the small cohort size, results must be interpreted with caution, however statistical analyses revealed elevated urinary non-adjusted 8-OHdG levels in the 1st trimester of mothers that delivered boys compared to those who delivered girls (p < 0.01). Increased urinary non-adjusted 8-OHdG concentrations at the time of delivery were significantly associated with clinical records (any type of clinical record during pregnancy; p < 0.05). The novel extraction and analytical method for the assessment of 8-OHdG is applicable for sensitive analysis of multiple analytes or biomarkers in urine matrix. This method could also be applied for other matrices such as blood or tissues. Our findings show that 8-OHdG in urine of pregnant women could predict oxidative stress in placenta and can be related to characteristics such as maternal obesity, mode of delivery and newborn sex.


Subject(s)
Deoxyguanosine , Pregnant Women , Male , Infant, Newborn , Humans , Female , Pregnancy , 8-Hydroxy-2'-Deoxyguanosine , Deoxyguanosine/urine , Chromatography, Liquid/methods , Creatinine/urine , Tandem Mass Spectrometry/methods , Placenta , Biomarkers/urine , Oxidative Stress , DNA Damage
4.
Environ Toxicol Pharmacol ; 98: 104073, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36738853

ABSTRACT

Components of cyanobacterial water blooms were quantified in aerosols above agitated water surfaces of five freshwater bodies. The thoracic and respirable aerosol fraction (0.1-10 µm) was sampled using a high-volume sampler. Cyanotoxins microcystins were detected by LC-MS/MS at levels 0.3-13.5 ng/mL (water) and < 35-415 fg/m3 (aerosol). Lipopolysaccharides (endotoxins) were quantified by Pyrogene rFC assay at levels < 10-119 EU/mL (water) and 0.13-0.64 EU/m3 (aerosol). Cyanobacterial DNA was detected by qPCR at concentrations corresponding to 104-105 cells eq./mL (water) and 101-103 cells eq./m3 (aerosol). Lipopolysaccharides isolated from bloom samples induced IL-6 and IL-8 cytokine release in human bronchial epithelial cells Beas-2B, while extracted cyanobacterial metabolites induced both pro-inflammatory and cytotoxic effects. Bloom components detected in aerosols and their bioactivities observed in upper respiratory airway epithelial cells together indicate that aerosols formed during cyanobacterial water blooms could induce respiratory irritation and inflammatory injuries, and thus present an inhalation health risk.


Subject(s)
Cyanobacteria Toxins , Cyanobacteria , Humans , Lipopolysaccharides/analysis , Chromatography, Liquid , Tandem Mass Spectrometry , Microcystins/toxicity , Cyanobacteria/metabolism , Fresh Water/analysis , Water , Aerosols
5.
Environ Res ; 222: 115368, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36716809

ABSTRACT

Current-use pesticide (CUP) exposure occurs mainly through diet and environmental application in both agricultural and urban settings. While pesticide exposure has been associated with many adverse health outcomes, the intermediary molecular mechanisms are still not completely elucidated. Among others, their roles in epigenetics (DNA methylation) and DNA damage due to oxidative stress are presumed. Scientific evidence on urinary biomarkers of such body response in general population is limited, especially in children. A total of 440 urine samples (n = 110 parent-child pairs) were collected during the winter and summer seasons in order to describe levels of overall DNA methylation (5-mC, 5-mdC, 5-hmdC, 7-mG, 3-mA) and oxidative stress (8-OHdG) biomarkers and investigate their possible associations with metabolites of pyrethroids (3-PBA, t/c-DCCA), chlorpyrifos (TCPY), and tebuconazole (TEB-OH). Linear mixed-effects models accounting for intraindividual and intrahousehold correlations were utilized. We applied false discovery rate procedure to account for multiplicity and adjusted for potential confounding variables. Higher urinary levels of most biological response biomarkers were measured in winter samples. In adjusted repeated measures models, interquartile range (IQR) increases in pyrethroid metabolites were associated with higher oxidative stress. t/c-DCCA and TCPY were associated with higher urinary levels of cytosine methylation biomarkers (5-mC and/or 5-mdC). The most robust association was observed for tebuconazole metabolite with 3-mA (-15.1% change per IQR increase, 95% CI = -23.6, -5.69) suggesting a role of this pesticide in reduced demethylation processes through possible DNA glycosylase inhibition. Our results indicate an urgent need to extend the range of analyzed environmental chemicals such as azole pesticides (e.g. prothioconazole) in human biomonitoring studies. This is the first study to report urinary DNA methylation biomarkers in children and associations between CUP metabolites and a comprehensive set of biomarkers including methylated and oxidized DNA alterations. Observed associations warrant further large-scale research of these biomarkers and environmental pollutants including CUPs.


Subject(s)
Pesticides , Pyrethrins , Humans , Adult , Pesticides/analysis , DNA Methylation , Czech Republic , Environmental Exposure/analysis , Pyrethrins/urine , Biomarkers/metabolism , Oxidative Stress
6.
Toxins (Basel) ; 14(9)2022 09 15.
Article in English | MEDLINE | ID: mdl-36136574

ABSTRACT

Although information about the occurrence and distribution of retinoids in the environment is scarce, cyanobacterial water blooms have been identified as a significant source of these small molecules. Despite the confirmed presence of retinoids in the freshwater blooms dominated by cyanobacteria and their described teratogenic effects, reliable identification of retinoid producers and the mechanism of their biosynthesis is missing. In this study, the cultures of several taxonomically diverse species of axenic cyanobacteria were confirmed as significant producers of retinoid-like compounds. The consequent bioinformatic analysis suggested that the enzymatic background required for the biosynthesis of all-trans retinoic acid from retinal is not present across phylum Cyanobacteria. However, we demonstrated that retinal conversion into other retinoids can be mediated non-enzymatically by free radical oxidation, which leads to the production of retinoids widely detected in cyanobacteria and environmental water blooms, such as all-trans retinoic acid or all-trans 5,6epoxy retinoic acid. Importantly, the production of these metabolites by cyanobacteria in association with the mass development of water blooms can lead to adverse impacts in aquatic ecosystems regarding the described teratogenicity of retinoids. Moreover, our finding that retinal can be non-enzymatically converted into more bioactive retinoids, also in water, and out of the cells, increases the environmental significance of this process.


Subject(s)
Cyanobacteria , Teratogens , Cyanobacteria/metabolism , Ecosystem , Retinoids/analysis , Retinoids/metabolism , Retinoids/toxicity , Teratogens/toxicity , Tretinoin/toxicity , Water/metabolism
8.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35209122

ABSTRACT

The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 µg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.


Subject(s)
Antiviral Agents/chemistry , COVID-19/prevention & control , Coated Materials, Biocompatible/chemistry , Nanofibers/chemistry , SARS-CoV-2/chemistry , Animals , COVID-19/transmission , Chlorocebus aethiops , Copper/chemistry , Gold/chemistry , Humans , Polyesters/chemistry , Titanium/chemistry , Vero Cells
9.
Environ Sci Pollut Res Int ; 29(18): 26810-26819, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34855176

ABSTRACT

The consumption of hazardous antineoplastic drugs (ADs) used in anticancer chemotherapies is steadily increasing representing thus risks to both human health and the environment. Hospitals may serve as a contamination source, and pharmacists preparing the antineoplastic drugs (ADs) as well as nurses administering chemotherapy and caring for oncology patients are among the healthcare professionals being highly exposed. Here, we present the results of systematic monitoring (2018-2020) of surface contamination by 13 ADs in the pharmacies and hospitals in the Czech Republic (CZ; large-scale monitoring, 20 workplaces) and Slovak Republic (SK; pilot study at 4 workplaces). The study evaluated contamination by three commonly monitored ADs, i.e., 5-fluorouracil (FU), cyclophosphamide (CP), and platinum (total Pt representing cis-, carbo-, and oxaliplatin) together with ten less explored ADs, i.e., gemcitabine (GEM), ifosfamide (IF), paclitaxel (PX), irinotecan (IRI), docetaxel (DOC), methotrexate (MET), etoposide (ETOP), capecitabine (CAP), imatinib (IMAT), and doxorubicin (DOX). Floors and desktop surfaces in hospitals (chemotherapy application rooms, nurse working areas) were found to be more contaminated, namely with CP and Pt, in both countries when compared to pharmacies. Comparison between the countries showed that hospital surfaces in SK are generally more contaminated (e.g., CP median was 20 times higher in SK), while some pharmacy areas in the CZ were more contamined in comparison with SK. The newly studied ADs were detected at lower concentrations in comparison to FU, CP, and Pt, but some markers (GEM, IF, PX, and IRI) were frequently observed, and adding these compounds to routine monitoring is recommended.


Subject(s)
Antineoplastic Agents , Occupational Exposure , Pharmacies , Antineoplastic Agents/analysis , Cyclophosphamide/analysis , Czech Republic , Environmental Monitoring/methods , Equipment Contamination , Fluorouracil/analysis , Hospitals , Humans , Ifosfamide/analysis , Occupational Exposure/analysis , Pilot Projects , Slovakia
10.
Membranes (Basel) ; 11(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34940466

ABSTRACT

Copper-coated nanofibrous materials are desirable for catalysis, electrochemistry, sensing, and biomedical use. The preparation of copper or copper-coated nanofibers can be pretty challenging, requiring many chemical steps that we eliminated in our robust approach, where for the first time, Cu was deposited by magnetron sputtering onto temperature-sensitive polymer nanofibers. For the first time, the large-scale modeling of PCL films irradiation by molecular dynamics simulation was performed and allowed to predict the ions penetration depth and tune the deposition conditions. The Cu-coated polycaprolactone (PCL) nanofibers were thoroughly characterized and tested as antibacterial agents for various Gram-positive and Gram-negative bacteria. Fast release of Cu2+ ions (concentration up to 3.4 µg/mL) led to significant suppression of E. coli and S. aureus colonies but was insufficient against S. typhimurium and Ps. aeruginosa. The effect of Cu layer oxidation upon contact with liquid media was investigated by X-ray photoelectron spectroscopy revealing that, after two hours, 55% of Cu atoms are in form of CuO or Cu(OH)2. The Cu-coated nanofibers will be great candidates for wound dressings thanks to an interesting synergistic effect: on the one hand, the rapid release of copper ions kills bacteria, while on the other hand, it stimulates the regeneration with the activation of immune cells. Indeed, copper ions are necessary for the bacteriostatic action of cells of the immune system. The reactive CO2/C2H4 plasma polymers deposited onto PCL-Cu nanofibers can be applied to grafting of viable proteins, peptides, or drugs, and it further explores the versatility of developed nanofibers for biomedical applications use.

11.
Polymers (Basel) ; 13(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34960945

ABSTRACT

Polypropylene is a typical representative of synthetic polymers that, for many applications including adhesive joints, requires an increase in wettability and chemical surface reactivity. Plasma processing offers efficient methods for such surface modifications. A particular disadvantage of the plasma jets can be the small plasma area. Here, we present a cold atmospheric plasma radio-frequency slit jet developed with a width of 150 mm applied to polypropylene plasma treatment in Ar, Ar/O2 and Ar/N2 We identified two main parameters influencing the tensile strength of adhesive joints mediated by epoxy adhesive DP 190, nitrogen content, and the amount of low molecular weight oxidized materials (LMWOMs). Nitrogen functional groups promoted adhesion between epoxy adhesive DP 190 and the PP by taking part in the curing process. LMWOMs formed a weak boundary layer, inhibiting adhesion by inducing a cohesive failure of the joint. A trade off between these two parameters determined the optimized conditions at which the strength of the adhesive joint increased 4.5 times. Higher adhesion strength was previously observed when using a translational plasma gliding arc plasma jet with higher plasma gas temperatures, resulting in better cross linking of polymer chains caused by local PP melting.

12.
Harmful Algae ; 108: 102101, 2021 08.
Article in English | MEDLINE | ID: mdl-34588122

ABSTRACT

Water bloom-forming cyanobacteria have a severe impact on freshwater quality. Although some cyanobacterial toxins such as microcystins have been studied extensively, other toxins like anatoxin-a (ATX) and their structural analogs - as well as cyanobacterial taxa producing these toxins remain to be explored in detail. The present study investigated levels of ATX, CYN and their homologs along with the occurrence of anaC and cyrJ genes in water blooms in 16 sites in the Czech Republic that were pre-selected concerning the presence of potential toxin producers. Besides, we also studied toxins and genes in a series of strains available in our laboratories. ATX and its congener HATX were detected in 5 natural biomass samples from the Czech Republic (maximum concentration 2.8 micrograms per gram d.w.). Interestingly, the anaC gene coding for ATX production was not detected in any of these toxin-positive biomass samples. The concentrations of ATX congeners in cyanobacterial laboratory strains were about 10-times higher than those of the original ATX, which calls for further research addressing levels and hazards of ATX analogs. Regarding the CYN and 7-deoxyCYN (other CYN congeners were not analyzed in this study) - these toxins were identified in a single small pond in the Czech Republic at concentrations 4.3 and 2.7 micrograms per gram of biomass d.w., respectively (corresponded to dissolved concentrations higher than 1 microgram per liter). The CYN-positive sample was dominated by CYN-producing taxa Raphidiopsis (basionym Cylindrospermopsis) and Cuspidothrix. We also confirmed the presence of a specific cyrJ gene in this natural bloom sample. To our knowledge, this is the first study pointing to Raphidiopsis (Cylindrospermopsis) and Cuspidothrix as producers of CYN in Europe. This observation calls for further research because of their increasing occurrence in (Central) Europe along with the global change. The present study demonstrates the importance of using combined (taxonomical, analytical, and molecular) approaches in the assessment of hazardous cyanobacteria and their toxins in freshwaters.


Subject(s)
Alkaloids , Tropanes , Cyanobacteria Toxins , Czech Republic
13.
Mar Environ Res ; 169: 105390, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34174543

ABSTRACT

Worsened state of oysters in French Arcachon Bay, demand an investigation of possible causes. This study evaluated the effects of an environmentally relevant mixture of five common pesticides on the early-life stages of the Pacific oyster (Magallana gigas). Laboratory assays with artificial mixture and in situ transplantation were complementarily used to investigate a series of sublethal endpoints. The laboratory exposure revealed developmental toxicity at 0.32 µg/L, which corresponds to mixture concentrations in Arcachon Bay. Downregulation of some gene transcriptions was observed at environmental level. No difference in larvae development was revealed among the three sites in Arcachon Bay. This study was the first to evaluate locomotion of oyster larvae exposed in situ. Suspected poor water quality in the inner part of Arcachon Bay was reflected by impairment at the molecular level. In conclusion, current concentrations of the tested pesticides in Arcachon Bay hinder larval development and affect several biological functions.


Subject(s)
Crassostrea , Pesticides , Water Pollutants, Chemical , Animals , Laboratories , Larva , Pesticides/toxicity , Water Pollutants, Chemical/toxicity
14.
Sci Total Environ ; 764: 142921, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33757243

ABSTRACT

Coastal areas are final recipients of various contaminants including pesticides. The effects of pesticides on non-target organisms are often unclear, especially at environmentally relevant concentrations. This study investigated the impacts of insecticide imidacloprid (IMI) and fungicide propiconazole (PRO), some of the most detected pesticides in the Arcachon Bay in France. This work also included the research of propiconazole nanoformulation (nanoPRO). The effects were assessed studying the development of the early life stages of the Pacific oyster (Magallana gigas). Oyster embryos were exposed for 24, 30, and 42 h (depending on the endpoint) at 24 °C to environmentally relevant concentrations of the two pesticides as well as to nanoPRO. The research focused on sublethal endpoints such as the presence of developmental malformations, alterations of locomotion patterns, or changes in the gene expression levels. No developmental abnormalities were observed after exposure to environmental concentrations detected in the Arcachon Bay in recent years (maximal detected concentration of IMI and PRO were 174 ng/L and 29 ng/L, respectively). EC50 of PRO and nanoPRO were comparable, 2.93 ±â€¯1.35 and 2.26 ±â€¯1.36 mg/L, while EC50 of IMI exceeded 200 mg/L. IMI did not affect larval behavior. PRO affected larval movement trajectory and decreased average larvae swimming speed (2 µg/L), while nanoPRO increased the maximal larvae swimming speed (0.02 µg/L). PRO upregulated especially genes linked to reactive oxygen species (ROS) production and detoxification. NanoPRO effects on gene expression were less pronounced - half of the genes were altered in comparison with PRO. IMI induced a strong dose-response impact on the genes linked to the detoxification, ROS production, cell cycle, and apoptosis regulation. In conclusion, our results suggest that current pesticide concentrations detected in the Arcachon Bay are safe for the Pacific oyster early development, but they might have a small direct effect via altered gene expressions, whose longer-term impacts cannot be ruled out.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Biomarkers , France , Gene Expression , Larva , Neonicotinoids , Nitro Compounds , Triazoles , Water Pollutants, Chemical/toxicity
15.
Int Arch Occup Environ Health ; 94(7): 1687-1702, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33738516

ABSTRACT

OBJECTIVE: Antineoplastic drugs (ADs) pose risks to healthcare staff. Surface disinfectants are used in hospitals to prevent microbial contamination but the efficiency of disinfectants to degrade ADs is not known. We studied nine disinfectants on ten ADs in the standardized laboratory and realistic in situ hospital conditions. METHODS: A survey in 43 hospitals prioritized nine most commonly used disinfections based on different ingredients. These were tested on inert stainless steel and in situ on contaminated hospital flooring. The effects against ten ADs were studied by LC-MS/MS (Cyclophosphamide CP; Ifosfamide IF; Capecitabine CAP; Sunitinib SUN; Methotrexate MET; Doxorubicin DOX; Irinotecan IRI; Paclitaxel PX; 5-Fluorouracil FU) and ICP-MS (Pt as a marker of platinum-based ADs). RESULTS: Monitoring of the floor contamination in 26 hospitals showed that the most contaminated are the outpatient clinics that suffer from a large turnover of staff and patients and have limited preventive measures. The most frequent ADs were Pt, PX, FU and CP with maxima exceeding the recommended 1 ng/cm2 limit by up to 140 times. IRI, FU, MET, DOX and SUN were efficiently removed by hydrolysis in clean water and present thus lower occupational risk. Disinfectants based on hydrogen peroxide were efficient against PX and FU (> 70% degradation) but less against other ADs, such as carcinogenic CP or IF, IRI and CAP. The most efficient were the active chlorine and peracetic acid-based products, which however release irritating toxic vapors. The innovative in situ testing of ADs previously accumulated in hospital flooring showed highly problematic removal of carcinogenic CP and showed that alcohol-based disinfectants may mobilize persistent ADs contamination from deeper floor layers. CONCLUSION: Agents based on hydrogen peroxide, peracetic acid, quaternary ammonium salts, glutaraldehyde, glucoprotamine or detergents can be recommended for daily use for both disinfection and AD decontamination. However, they have variable efficiencies and should be supplemented by periodic use of strong chlorine-based disinfectants efficient also against the carcinogenic and persistent CP.


Subject(s)
Antineoplastic Agents , Decontamination/methods , Disinfectants , Detergents , Diamines , Equipment Contamination , Floors and Floorcoverings , Glutaral , Hospitals , Hydrogen Peroxide , Laboratories , Peracetic Acid , Pyrrolidinones , Quaternary Ammonium Compounds , Stainless Steel
16.
Int J Mol Sci ; 21(24)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322781

ABSTRACT

Amine-coated biodegradable materials based on synthetic polymers have a great potential for tissue remodeling and regeneration because of their excellent processability and bioactivity. In the present study, we have investigated the influence of various chemical compositions of amine plasma polymer (PP) coatings and the influence of the substrate morphology, represented by polystyrene culture dishes and polycaprolactone nanofibers (PCL NFs), on the behavior of vascular smooth muscle cells (VSMCs). Although all amine-PP coatings improved the initial adhesion of VSMCs, 7-day long cultivation revealed a clear preference for the coating containing about 15 at.% of nitrogen (CPA-33). The CPA-33 coating demonstrated the ideal combination of good water stability, a sufficient amine group content, and favorable surface wettability and morphology. The nanostructured morphology of amine-PP-coated PCL NFs successfully slowed the proliferation rate of VSMCs, which is essential in preventing restenosis of vascular replacements in vivo. At the same time, CPA-33-coated PCL NFs supported the continuous proliferation of VSMCs during 7-day long cultivation, with no significant increase in cytokine secretion by RAW 264.7 macrophages. The CPA-33 coating deposited on biodegradable PCL NFs therefore seems to be a promising material for manufacturing small-diameter vascular grafts, which are still lacking on the current market.


Subject(s)
Amines/chemistry , Coated Materials, Biocompatible/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Nanofibers/chemistry , Plasma/chemistry , Polymers/chemistry , Amines/adverse effects , Amines/immunology , Amines/pharmacology , Animals , Cell Adhesion/drug effects , Cell Adhesion/immunology , Cell Proliferation/drug effects , Cells, Cultured , Coated Materials, Biocompatible/adverse effects , Coated Materials, Biocompatible/chemistry , Macrophages/drug effects , Macrophages/metabolism , Mice , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/growth & development , Myocytes, Smooth Muscle/metabolism , Nanofibers/adverse effects , Photoelectron Spectroscopy , Plasma/immunology , Polyesters/chemistry , Polymers/adverse effects , Polymers/pharmacology , RAW 264.7 Cells , Rats , Surface Properties/drug effects , Tissue Scaffolds/adverse effects , Tissue Scaffolds/chemistry
17.
Aquat Toxicol ; 228: 105613, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32949975

ABSTRACT

Cyanobacteria are known for their ability to produce and release mixtures of up to thousands of compounds into the environment. Recently, the production of novel metabolites, retinoids, was reported for some cyanobacterial species along with teratogenic effects of samples containing these compounds. Retinoids are natural endogenous substances derived from vitamin A that play a crucial role in early vertebrate development. Disruption of retinoid signalling- especially during the early development of the nervous system- might lead to major malfunctions and malformations. In this study, the toxicity of cyanobacterial biomass samples from the field containing retinoids was characterized by in vivo and in vitro bioassays with a focus on the potential hazards towards nervous system development and function. Additionally, in order to identify the compounds responsible for the observed in vitro and in vivo effects the complex cyanobacterial extracts were fractionated (C18 column, water-methanol gradient) and the twelve obtained fractions were tested in bioassays. In all bioassays, all-trans retinoic acid (ATRA) was tested along with the environmental samples as a positive control. Retinoid-like activity (mediated via the retinoic acid receptor, RAR) was measured in the transgenic cell line p19/A15. The in vitro assay showed retinoid-like activity by specific interaction with RAR for the biomass samples. Neurotoxic effects of selected samples were studied on zebrafish (Danio rerio) embryos using the light/dark transition test (Viewpoint, ZebraLab system) with 120 hpf larvae. In the behavioural assay, the cyanobacterial extracts caused significant hyperactivity in zebrafish at 120 hpf after acute exposure (3 h prior to the measurement) at concentrations below the teratogenicity LOEC (0.2 g dw L-1). Similar effect was observed after exposure to fractions of the extracts with detected retinoid-like activity and additive effect was observed after combining the fractions. However, the effect on behaviour was not observed after exposure to ATRA only. To provide additional insight into the behavioural effects and describe the underlying mechanism gene expression of selected biomarkers was measured. We evaluated an array of 28 genes related to general toxicity, neurodevelopment, retinoid and thyroid signalling. We detected several affected genes, most notably, the Cyp26 enzymes that control endogenous ATRA concentration, which documents an effect on retinoid signalling.


Subject(s)
Behavior, Animal/drug effects , Cyanobacteria/metabolism , Embryo, Nonmammalian/drug effects , Tretinoin/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/growth & development , Animals , Biological Assay , Biomass , Cell Line, Tumor , Cyanobacteria/growth & development , Embryo, Nonmammalian/metabolism , Gene Expression/drug effects , Mice , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Tretinoin/metabolism , Water Pollutants, Chemical/metabolism , Zebrafish/metabolism
18.
Harmful Algae ; 96: 101849, 2020 06.
Article in English | MEDLINE | ID: mdl-32560836

ABSTRACT

Puwainaphycins (PUW) and minutissamides (MIN) are cyanobacterial lipopeptides found in various cyanobacterial species. The first possible target of human exposure to them is intestinal epithelium but effect of PUW/MIN on enterocytes is not known at all. Using differentiated Caco-2 cells, PUW F was found to be cytotoxic from 5 µM concentration based on lactate dehydrogenase release assay and total protein concentration. However, it is also able to induce production of interleukin 8 in non-cytotoxic concentrations 1 and 2.5 µM detected by ELISA. Effects of MIN A and C were similar but less pronounced compared to PUW F. On the other hand, MIN D was the least toxic compound with no significant pro-inflammatory effects. Surprisingly, pro-inflammatory activation of the cells by PUW F and MIN C resulted in an increase in tight junction (TJ) protein claudin 4 expression determined by western blot analysis and confirmed by confocal microscopy. Furthermore, decrease in expression of zonula occludens 3, another TJ protein, was observed after the exposure to PUW F. Taken together, these cytotoxic lipopeptides, especially PUW F, are to be studied more deeply due to their capability to activate and/or deregulate human enterocytes in low concentrations.


Subject(s)
Cyanobacteria , Lipopeptides , Caco-2 Cells , Humans , Intestinal Mucosa , Tight Junctions
19.
Aquat Toxicol ; 221: 105444, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32078888

ABSTRACT

Herbicides and their metabolites are often detected in water bodies where they may cause adverse effects to non-target organisms. Their effects at environmentally relevant concentrations are often unclear, especially concerning mixtures of pesticides. This study thus investigated the impacts of one of the most used herbicides: S-metolachlor and its two metabolites, metolachlor oxanilic acid (MOA) and metolachlor ethanesulfonic acid (MESA) on the development of zebrafish embryos (Danio rerio). Embryos were exposed to the individual substances and their environmentally relevant mixture until 120 hpf (hours post-fertilization). The focus was set on sublethal endpoints such as malformations, hatching success, length of fish larvae, spontaneous movements, heart rate and locomotion. Moreover, expression levels of eight genes linked to the thyroid system disruption, oxidative stress defense, mitochondrial metabolism, regulation of cell cycle and retinoic acid (RA) signaling pathway were analyzed. Exposure to S-metolachlor (1 µg/L) and the pesticide mixture (1 µg/L of each substance) significantly reduced spontaneous tail movements of 21 hpf embryos. Few rare developmental malformations were observed, but only in larvae exposed to more than 100 µg/L of individual substances (craniofacial deformation, non-inflated gas bladder, yolk sac malabsorption) and to 30 µg/L of each substance in the pesticide mixture (spine deformation). No effect on hatching success, length of larvae, heart rate or larvae locomotion were found. Strong responses were detected at the molecular level including induction of p53 gene regulating the cell cycle (the pesticide mixture - 1 µg/L of each substance; MESA 30 µg/L; and MOA 100 µg/L), as induction of cyp26a1 gene encoding cytochrome P450 (pesticide mixture - 1 µg/L of each substance). Genes implicated in the thyroid system regulation (dio2, thra, thrb) were all overexpressed by the environmentally relevant concentrations of the pesticide mixture (1 µg/L of each substance) and MESA metabolite (1 µg/L). Zebrafish thyroid system disruption was revealed by the overexpressed genes, as well as by some related developmental malformations (mainly gas bladder and yolk sac abnormalities), and reduced spontaneous tail movements. Thus, the thyroid system disruption represents a likely hypothesis behind the effects caused by the low environmental concentrations of S-metolachlor, its two metabolites and their mixture.


Subject(s)
Acetamides/toxicity , Embryo, Nonmammalian/drug effects , Herbicides/toxicity , Thyroid Gland/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Acetamides/metabolism , Animals , Drug Synergism , Embryo, Nonmammalian/metabolism , Embryonic Development/drug effects , Herbicides/metabolism , Larva , Thyroid Gland/embryology , Water Pollutants, Chemical/metabolism
20.
Nanotoxicology ; 14(2): 214-231, 2020 03.
Article in English | MEDLINE | ID: mdl-31726900

ABSTRACT

Although the production of engineered nanoparticles increases our knowledge of toxicity and mechanisms of bioactivity during relevant exposures is lacking. In the present study mice were exposed to PbO nanoparticles (PbONP; 192.5 µg/m3; 1.93 × 106 particles/cm3) for 2, 5 and 13 weeks through continuous inhalation. The analyses addressed Pb and PbONP distribution in organs (lung, liver, kidney, brain) using electrothermal atomic absorption spectrometry and transmission electron microscopy, as well as histopathology and analyses of oxidative stress biomarkers. New LC-MS/MS methods were validated for biomarkers of lipid damage F2-isoprostanes (8-iso-prostaglandins F2-alpha and E2) and hydroxylated deoxoguanosine (8-OHdG, marker of DNA oxidation). Commonly studied malondialdehyde was also measured as TBARS by HPLC-DAD. The study revealed fast blood transport and distribution of Pb from the lung to the kidney and liver. A different Pb accumulation trend was observed in the brain, suggesting transfer of NP along the nasal nerve to the olfactory bulbs. Long-term inhalation of PbONP caused lipid peroxidation in animal brains (increased levels of TBARS and both isoprostanes). Membrane lipid damage was also detected in the kidney after shorter exposures, but not in the liver or lung. On the contrary, longer exposures to PbONP increased levels of 8-OHdG in the lung and temporarily increased lung weight after 2 and 5 weeks of exposure. The histopathological changes observed mainly in the lung and liver indicated inflammation and general toxicity responses. The present long-term inhalation study indicates risks of PbONP to both human health and the environment.


Subject(s)
DNA Damage , Inhalation Exposure/adverse effects , Lead/toxicity , Membrane Lipids/metabolism , Nanoparticles/toxicity , Oxidative Stress/drug effects , Oxides/toxicity , Animals , Biomarkers/metabolism , Brain/drug effects , Brain/metabolism , Humans , Inflammation , Inhalation Exposure/analysis , Kidney/drug effects , Kidney/metabolism , Lead/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred ICR , Nanoparticles/metabolism , Oxidation-Reduction , Oxides/metabolism , Toxicity Tests, Subchronic
SELECTION OF CITATIONS
SEARCH DETAIL
...