Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(12): e0296510, 2023.
Article in English | MEDLINE | ID: mdl-38157369

ABSTRACT

INTRODUCTION: Tissue engineering has emerged as an innovative approach to treat critical-size bone defects using biocompatible scaffolds, thus avoiding complex distraction surgeries or limited stock grafts. Continuous regeneration monitoring is essential in critical-size cases due to the frequent appearance of non-unions. This work evaluates the potential clinical use of gait analysis for the mechanical assessment of a tissue engineering regeneration as an alternative to the traditional and hardly conclusive manual or radiological follow-up. MATERIALS AND METHODS: The 15-mm metatarsal fragment of eight female merino sheep was surgically replaced by a bioceramic scaffold stabilized with an external fixator. Gait tests were performed weekly by making the sheep walk on an instrumented gangway. The evolution of different kinematic and dynamic parameters was analyzed for all the animal's limbs, as well as asymmetries between limbs. Finally, potential correlation in the recovery of the gait parameters was evaluated through the linear regression models. RESULTS: After surgery, the operated limb has an altered way of carrying body weight while walking. Its loading capacity was significantly reduced as the stance phases were shorter and less impulsive. The non-operated limbs compensated for this mobility deficit. All parameters were normalizing during the consolidation phase while the bone callus was simultaneously mineralizing. The results also showed high levels of asymmetry between the operated limb and its contralateral, which exceeded 150% when analyzing the impulse after surgery. Gait recovery significantly correlated between symmetrical limbs. CONCLUSIONS: Gait analysis was presented as an effective, low-cost tool capable of mechanically predicting the regeneration of critical-size defects treated by tissue engineering, as comparing regeneration processes or novel scaffolds. Despite the progressive normalization as the callus mineralized, the bearing capacity reduction and the asymmetry of the operated limb were more significant than in other orthopedic alternatives.


Subject(s)
Bone Regeneration , Tissue Engineering , Female , Sheep , Animals , Gait , Bony Callus , Walking , Tissue Scaffolds
2.
Tissue Eng Regen Med ; 20(6): 893-904, 2023 10.
Article in English | MEDLINE | ID: mdl-37606809

ABSTRACT

BACKGROUND: 3D-printed bioceramic scaffolds have gained popularity due to their controlled microarchitecture and their proven biocompatibility. However, their high brittleness makes their surgical implementation complex for weight-bearing bone treatments. Thus, they would require difficult-to-instrument rigid internal fixations that limit a rigorous evaluation of the regeneration progress through the analysis of mechanic-structural parameters. METHODS: We investigated the compatibility of flexible fixations with fragile ceramic implants, and if mechanical monitoring techniques are applicable to bone tissue engineering applications. Tissue engineering experiments were performed on 8 ovine metatarsi. A 15 mm bone segment was directly replaced with a hydroxyapatite scaffold and stabilized by an instrumented Ilizarov-type external fixator. Several in vivo monitoring techniques were employed to assess the mechanical and structural progress of the tissue. RESULTS: The applied surgical protocol succeeded in combining external fixators and subject-specific bioceramic scaffolds without causing fatal fractures of the implant due to stress concentrator. The bearing capacity of the treated limb was initially altered, quantifying a 28-56% reduction of the ground reaction force, which gradually normalized during the consolidation phase. A faster recovery was reported in the bearing capacity, stiffening and bone mineral density of the callus. It acquired a predominant mechanical role over the fixator in the distribution of internal forces after one post-surgical month. CONCLUSION: The bioceramic scaffold significantly accelerated in vivo the bone formation compared to other traditional alternatives in the literature (e.g., distraction osteogenesis). In addition, the implemented assessment techniques allowed an accurate quantitative evaluation of the bone regeneration through mechanical and imaging parameters.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Sheep , Animals , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Bone Regeneration , Bone and Bones , Printing, Three-Dimensional
3.
Ann Biomed Eng ; 50(12): 1798-1809, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35732853

ABSTRACT

Collagen is a ubiquitous protein present in regenerating bone tissues that experiences multiple biological phenomena during distraction osteogenesis until the deposition of phosphate crystals. This work combines fluorescence techniques and mathematical modeling to shed light on the mechano-structural processes behind the maturation and accommodation-to-mineralization of the callus tissue. Ovine metatarsal bone calluses were analyzed through confocal images at different stages of the early distraction osteogenesis process, quantifying the fiber orientation distribution and mean intensity as fiber density measure. Likewise, a mathematical model based on the experimental data was defined to micromechanically characterize the apparent stiffening of the tissue within the distracted callus. A reorganization of the fibers around the distraction axis and increased fiber density were found as the bone fragments were gradually separated. Given the degree of significance between the mathematical model and previous in vivo data, reorganization, densification, and bundle maturation phenomena seem to explain the apparent mechanical maturation observed in the tissue theoretically.


Subject(s)
Osteogenesis, Distraction , Osteogenesis , Sheep , Animals , Bony Callus/diagnostic imaging , Osteogenesis, Distraction/methods , Diagnostic Imaging , Models, Theoretical , Bone Regeneration
4.
J Mech Behav Biomed Mater ; 121: 104613, 2021 09.
Article in English | MEDLINE | ID: mdl-34126507

ABSTRACT

Tissue engineering has recently gained popularity as an alternative to autografts to stimulate bone tissue regeneration through structures called scaffolds. Most of the in vivo experiments on long-bony defects use internally-stabilized generic scaffolds. Despite the wide variety of computational methods, a standardized protocol is required to optimize ceramic scaffolds for load-bearing bony defects stabilized with flexible fixations. An optimization problem was defined for applications to sheep metatarsus defects. It covers biological parameters (porosity, pore size, and the specific surface area) and mechanical constraints based on in vivo and in vitro results reported in the literature. The optimized parameters (59.30% of porosity, 5768.91 m-1 of specific surface area, and 360.80 µm of pore size) and the compressive strength of the selected structure were validated in vitro by means of tomographic images and compression tests of six 3D-printed samples. Divergences between the design and measured values of the optimized parameters, mainly due to manufacturing defects, are consistent with the previous studies. Using the mixed experimental-mathematical scaffold-design procedure described, they could be implanted in vivo with instrumented external fixators, therefore facilitating biomechanical monitoring of the regeneration process.


Subject(s)
Printing, Three-Dimensional , Tissue Scaffolds , Animals , Bone Regeneration , Ceramics , Humans , Porosity , Sheep , Tissue Engineering , Weight-Bearing
5.
Ann Biomed Eng ; 49(4): 1209-1221, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33111968

ABSTRACT

Bone lengthening and bone transport are regeneration processes that commonly rely on distraction osteogenesis, a widely accepted surgical procedure to deal with numerous bony pathologies. Despite the extensive study in the literature of the influence of biomechanical factors, a lack of knowledge about their mechanobiological differences prevents a clinical particularization. Bone lengthening treatments were performed on sheep metatarsus by reproducing the surgical and biomechanical protocol of previous bone transport experiments. Several in vivo monitoring techniques were employed to build an exhaustive comparison: gait analysis, radiographic and CT assessment, force measures through the fixation, or mechanical characterization of the new tissue. A significant initial loss of the bearing capacity, quantified by the ground reaction forces and the limb contact time with the ground, is suffered by the bone lengthening specimens. The potential effects of this anomaly on the musculoskeletal force distribution and the evolution of the bone callus elastic modulus over time are also analyzed. Imaging techniques also seem to reveal lower bone volume in the bone lengthening callus than in the bone transport one, but an equivalent mineralization rate. The simultaneous quantification of biological and mechanical parameters provides valuable information for the daily clinical routine and numerical tools development.


Subject(s)
Bone Regeneration/physiology , Bony Callus/physiology , Gait/physiology , Metatarsal Bones/physiology , Osteogenesis, Distraction , Animals , Biomechanical Phenomena , Bony Callus/diagnostic imaging , Bony Callus/surgery , Elastic Modulus , Female , Metatarsal Bones/diagnostic imaging , Metatarsal Bones/surgery , Sheep , Tomography, X-Ray Computed
6.
Ann Biomed Eng ; 49(2): 642-652, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32808118

ABSTRACT

Bone lengthening is a bone regeneration technique with multiple clinical applications. One of the most common complications of this treatment is the lack of adaptation of the surrounding soft tissue to their extension. A better understanding of the mechanobiology of the tissues involved in distraction osteogenesis would allow better control of the clinical cases. Bone lengthening treatments were performed in vivo in the metatarsus of Merino sheep, measuring the distraction forces by means of an instrumented fixator. The tissue relaxation after distraction was analyzed in this study. A viscoelastic model was also applied to distraction data to assess the mechanical behavior of the tissues during the distraction phase. Tissue relaxation is similar to other bone regeneration processes which do not imply surrounding soft tissue extension, e.g. bone transport. The effects of this tissue on distraction forces are limited to the first minutes of distraction and elongations above 4% of the original length with the protocol applied. Moreover, the surrounding soft tissue initially loses some of its viscoelasticity and subsequently suffers strain hardening from day 5 of distraction until the end of the distraction phase, day 15. Finally, anatomical changes were also evidenced in the elongated limb of our specimens.


Subject(s)
Bone Regeneration/physiology , Metatarsal Bones/physiology , Animals , Biomechanical Phenomena , Female , Models, Biological , Osteogenesis, Distraction , Sheep
7.
Sensors (Basel) ; 20(16)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824259

ABSTRACT

For the monitoring of bone regeneration processes, the instrumentation of the fixation is an increasingly common technique to indirectly measure the evolution of bone formation instead of ex vivo measurements or traditional in vivo techniques, such as X-ray or visual review. A versatile instrumented external fixator capable of adapting to multiple bone regeneration processes was designed, as well as a wireless acquisition system for the data collection. The design and implementation of the overall architecture of such a system is described in this work, including the hardware, firmware, and mechanical components. The measurements are conditioned and subsequently sent to a PC via wireless communication to be in vivo displayed and analyzed using a developed real-time monitoring application. Moreover, a model for the in vivo estimation of the bone callus stiffness from collected data was defined. This model was validated in vitro using elastic springs, reporting promising results with respect to previous equipment, with average errors and uncertainties below 6.7% and 14.04%. The devices were also validated in vivo performing a bone lengthening treatment on a sheep metatarsus. The resulting system allowed the in vivo mechanical characterization of the bone callus during experimentation, providing a low-cost, simple, and highly reliable solution.


Subject(s)
Bony Callus , Metatarsal Bones , Monitoring, Physiologic , Animals , Bone Regeneration , External Fixators , Radiography , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...