Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Food Prot ; 87(6): 100272, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579970

ABSTRACT

Hand hygiene is broadly recognized as a critical intervention in reducing the spread of disease-causing pathogens in both professional and personal uses. In this study, the impact of antibacterial (AB) or nonantibacterial soaps on the removal and postwash transfer of E. coli following the handling of raw poultry was assessed. Baseline bacterial contamination ranged between 107 and 109 CFU per hand. Hands were washed for 30 s in 40°C ± 2°C tap water using 2 mL of AB soap (0.5% and 1.0% Chloroxylenol, 0.5% Benzalkonium Chloride, or 4.0% Chlorhexidine Gluconate), non-AB soap (cosmetic/plain soap), or water. Postwash, water, and non-AB soap had a mean 3.63 and 3.65 Log10 reduction of E. coli on hands. AB treatments had a mean 4.19-4.35 Log10 reduction. Rinse water had mean bacterial counts of 8.62 and 8.88 Log10 CFU/mL for non-AB soap and water and 5.37-6.90 Log10 CFU/mL for AB treatments. Bacterial transfer was assessed by following the test subject's handling of a sterile polymer knife handle for 30 s postwash. E. coli transfer ranged from 263 to 903 CFU/handle for AB soaps and 1572 or 1709 CFU/handle for water and non-AB soap. Differences between AB and non-AB treatments were statistically significant (p < 0.0001) for hands and rinse water. Differences in transfer from hands to knife handle were not statistically significant (p = 0.139). Combined, these data highlight significant differences in the performance of AB soaps relative to non-AB soaps in a food handling environment-specific usage example and provide an unexplored assessment of the bactericidal vs. removal effects of AB vs. non-AB soaps on bacteria removed from the hands. These data reinforce the importance of hand hygiene, provide new details on the differences between AB vs. non-AB soaps, and highlight potential differences to inform food handling environment operators and public health personnel on how these products may impact food safety.


Subject(s)
Anti-Bacterial Agents , Colony Count, Microbial , Escherichia coli , Poultry , Soaps , Animals , Humans , Escherichia coli/drug effects , Soaps/pharmacology , Anti-Bacterial Agents/pharmacology , Hand Disinfection , Hand/microbiology , Food Handling/methods , Food Contamination/analysis , Disinfectants/pharmacology , Hand Hygiene , Food Microbiology
2.
Infect Prev Pract ; 3(4): 100191, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34853831

ABSTRACT

BACKGROUND: The CDC and WHO recommend alcohol-based hand sanitizers to inactivate severe acute respiratory syndrome coronavirus-2 [SARS-CoV-2]. AIM: Benzalkonium chloride [BAK] is another hand sanitizer active ingredient that could be used in response to the global pandemic. Deployment of BAK-based hand sanitizers could reduce shortages of alcohol products and increase hand hygiene options where there are social, physical, and toxicological constraints on alcohol use. METHODS: Two commercially available BAK-based hand sanitizers, a concentrate diluted on-site with water and a ready-to-use product, were tested for activity against SARS-CoV-2 in the European Norm Virucidal Activity Suspension Test [EN14476]. A WHO and CDC-recommended 80% alcohol-based hand sanitizer formulation was tested in parallel. FINDINGS: Both BAK formulations demonstrated a ≥4.0 log10 reduction of SARS-CoV-2 in 30 seconds, meeting the EN14476 performance standard for virucidal activity against SARS-CoV-2 and matching the in vitro effectiveness of the ethanol-based sanitizer. CONCLUSION: These findings indicate that a commercial BAK hand hygiene formulation may be another effective means of inactivating the SARS-CoV-2 virus and could be considered as option for pandemic response.

3.
J Food Prot ; 82(1): 102-108, 2019 01.
Article in English | MEDLINE | ID: mdl-30702939

ABSTRACT

Salsa-associated outbreaks, including the large multistate outbreak in the United States in 2008 caused by jalapeño and serrano peppers contaminated with Salmonella Saintpaul, have raised concerns about salsa as a potential vehicle for transmission. Despite these events, there has been relatively limited research on the potential growth of pathogenic bacteria in salsa. The aim of this study was to characterize the survival and growth of Salmonella, including the outbreak strain of Salmonella Saintpaul (E2003001236), in freshly made salsa and its main ingredients. Chopped tomatoes, jalapeño peppers, cilantro, and onions were tested individually or mixed according to different salsa recipes. Samples were inoculated with five Salmonella serotypes at 3 log CFU/g: Saintpaul (various strains), Typhimurium, Montevideo, Newport, or Enteritidis. Samples were then stored at room temperature (23°C) for up to 12 h or 3 days. The Salmonella Saintpaul levels reached approximately 9 log CFU/g after 2 days in tomato, jalapeño pepper, and cilantro. Growth was slower in onions, reaching 6 log CFU/g by day 3. Salsa recipes, with or without lime juice, supported the growth of Salmonella Saintpaul, and final levels were approximately 7 log CFU/g after 3 days at 23°C. In contrast, the counts of Salmonella Typhimurium, Salmonella Montevideo, Salmonella Newport, and Salmonella Enteritidis increased only 2 log CFU/g after 3 days in any of the salsas. Other Salmonella Saintpaul strains were able to grow in salsas containing 10% lime juice, but their final levels were less than 5 log CFU/g. These findings indicate the enhanced ability of the Salmonella Saintpaul outbreak strain to grow in salsa compared with other Salmonella strains. Recipe modifications including but not limited to adding lime juice (at least 10%) and keeping fresh salsa at room temperature for less than 12 h before consumption are strategies that can help mitigate the growth of Salmonella in salsa.


Subject(s)
Food Contamination/analysis , Salmonella Food Poisoning , Salmonella enterica/growth & development , Solanum lycopersicum/microbiology , Colony Count, Microbial , Food Microbiology , Humans , Mexico , Serogroup , Temperature
4.
PLoS One ; 12(10): e0187074, 2017.
Article in English | MEDLINE | ID: mdl-29065168

ABSTRACT

Disinfectants play an important role in controlling microbial contamination on hard surfaces in hospitals. The effectiveness of disinfectants in real life can be predicted by laboratory tests that measure killing of microbes on carriers. The modified Quantitative Disk Carrier Test (QCT-2) is a standard laboratory method that employs American Iron and Steel Institute (AISI) Type 430 stainless steel carriers to measure hospital disinfectant efficacy against Clostridium difficile spores. The formation of a rust-colored precipitate was observed on Type 430 carriers when testing a peracetic acid (PAA)-based disinfectant with the QCT-2 method. It was hypothesized that the precipitate was indicative of corrosion of the Type 430 carrier, and that corrosion could impact efficacy results. The objective of this study was to compare the suitability of AISI Type 430 to Type 304 stainless steel carriers for evaluating PAA-based disinfectants using the QCT-2 method. Type 304 is more corrosion-resistant than Type 430, is ubiquitous in healthcare environments, and is used in other standard methods. Suitability of the carriers was evaluated by comparing their impacts on efficacy results and PAA degradation rates. In efficacy tests with 1376 ppm PAA, reductions of C. difficile spores after 5, 7 and 10 minutes on Type 430 carriers were at least about 1.5 log10 lower than reductions on Type 304 carriers. In conditions simulating a QCT-2 test, PAA concentration with Type 430 carriers was reduced by approximately 80% in 10 minutes, whereas PAA concentration in the presence of Type 304 carriers remained stable. Elemental analyses of residues on each carrier type after efficacy testing were indicative of corrosion on the Type 430 carrier. Use of Type 430 stainless steel carriers for measuring the efficacy of PAA-based disinfectants should be avoided as it can lead to an underestimation of real life sporicidal efficacy. Type 304 stainless steel carriers are recommended as a suitable alternative.


Subject(s)
Clostridioides difficile/growth & development , Disinfectants/pharmacology , Peracetic Acid/pharmacology , Spores, Bacterial/drug effects , Stainless Steel , Surface Properties
5.
Appl Environ Microbiol ; 78(6): 1752-64, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22247152

ABSTRACT

An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.


Subject(s)
Escherichia coli K12/genetics , Escherichia coli O157/genetics , Lactuca/microbiology , Plant Leaves/microbiology , Transcriptome , Bacterial Adhesion , Escherichia coli K12/physiology , Escherichia coli O157/physiology , Microarray Analysis
6.
Compr Rev Food Sci Food Saf ; 9(1): 3-20, 2010 Jan.
Article in English | MEDLINE | ID: mdl-33467811

ABSTRACT

Over one-half of foodborne illnesses are believed to be viral in origin. The ability of viruses to persist in the environment and foods, coupled with low infectious doses, allows even a small amount of contamination to cause serious problems. An increased incidence of foodborne illnesses and consumer demand for fresh, convenient, and safe foods have prompted research into alternative food-processing technologies. This review focuses on viral inactivation by both traditional processing technologies such as use of antimicrobial agents and the application of heat, and also novel processing technologies including high-pressure processing, ultraviolet- and gamma-irradiation, and pulsed electric fields. These industrially applicable control measures will be discussed in relation to the 2 most common causes of foodborne viral illnesses, hepatitis A virus and human noroviruses. Other enteric viruses, including adenoviruses, rotaviruses, aichi virus, and laboratory and industrial viral surrogates such as feline caliciviruses, murine noroviruses, bacteriophage MS2 and ΦX174, and virus-like particles are also discussed. The basis of each technology, inactivation efficacy, proposed mechanisms of viral inactivation, factors affecting viral inactivation, and applicability to the food industry with a focus on ready-to-eat foods, produce, and shellfish, are all featured in this review.

7.
Appl Environ Microbiol ; 71(10): 5879-87, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16204500

ABSTRACT

Different nutrient receptors varied in triggering germination of Bacillus subtilis spores with a pressure of 150 MPa, the GerA receptor being more responsive than the GerB receptor and even more responsive than the GerK receptor. This hierarchy in receptor responsiveness to pressure was the same as receptor responsiveness to a mixture of nutrients. The levels of nutrient receptors influenced rates of pressure germination, since the GerA receptor is more abundant than the GerB receptor and elevated levels of individual receptors increased spore germination by 150 MPa of pressure. However, GerB receptor variants with relaxed specificity for nutrient germinants responded as well as the GerA receptor to this pressure. Spores lacking dipicolinic acid did not germinate with this pressure, and pressure activation of the GerA receptor required covalent addition of diacylglycerol. However, pressure activation of the GerB and GerK receptors displayed only a partial (GerB) or no (GerK) diacylglycerylation requirement. These effects of receptor diacylglycerylation on pressure germination are similar to those on nutrient germination. Wild-type spores prepared at higher temperatures germinated more rapidly with a pressure of 150 MPa than spores prepared at lower temperatures; this was also true for spores with only one receptor, but receptor levels did not increase in spores made at higher temperatures. Changes in inner membrane unsaturated fatty acid levels, lethal treatment with oxidizing agents, or exposure to chemicals that inhibit nutrient germination had no major effect on spore germination by 150 MPa of pressure, except for strong inhibition by HgCl2.


Subject(s)
Bacillus subtilis/physiology , Gene Expression Regulation, Bacterial , Hydrostatic Pressure , Receptors, Cell Surface/metabolism , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Bacterial Proteins , Culture Media , Membrane Proteins , Mercuric Chloride/pharmacology , Receptors, Cell Surface/genetics , Spores, Bacterial/drug effects , Spores, Bacterial/growth & development , Spores, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL