Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 9(4)2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31010181

ABSTRACT

Cross-linked chemisorbed n-alkylsilane (CH3(CH2)n-1Si(OH)3) monolayers on amorphous silica surfaces have been studied and their structural properties and frictional performance were compared to those of equivalent monolayers without cross-linkages. The simulations isolated for the first time the effects of both siloxane cross-linkages and the fraction of chains chemisorbed to the surface, providing insight into a longstanding fundamental question in the literature regarding molecular-level structure. The results demonstrate that both cross-linkages and the fraction of chemisorbed chains affect monolayer structure in small but measurable ways, particularly for monolayers constructed from short chains; however, these changes do not appear to have a significant impact on frictional performance.

2.
J Phys Chem B ; 121(27): 6588-6600, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28557461

ABSTRACT

A force field for perfluoropolyethers (PFPEs) based on the general optimized potentials for liquid simulations all-atom (OPLS-AA) force field has been derived in conjunction with experiments and ab initio quantum mechanical calculations. Vapor pressures and densities of two liquid PFPEs, perfluorodiglyme (CF3-O-(CF2-CF2-O)2-CF3) and perfluorotriglyme (CF3-O-(CF2-CF2-O)3-CF3), have been measured experimentally to validate the force field and increase our understanding of the physical properties of PFPEs. Force field parameters build upon those for related molecules (e.g., ethers and perfluoroalkanes) in the OPLS-AA force field, with new parameters introduced for interactions specific to PFPEs. Molecular dynamics simulations using the new force field demonstrate excellent agreement with ab initio calculations at the RHF/6-31G* level for gas-phase torsional energies (<0.5 kcal mol-1 error) and molecular structures for several PFPEs, and also accurately reproduce experimentally determined densities (<0.02 g cm-3 error) and enthalpies of vaporization derived from experimental vapor pressures (<0.3 kcal mol-1). Additional comparisons between experiment and simulation show that polyethers demonstrate a significant decrease in enthalpy of vaporization upon fluorination unlike related molecules (e.g., alkanes and alcohols). Simulation suggests this phenomenon is a result of reduced cohesion in liquid PFPEs due to a reduction in localized associations between backbone oxygen atoms and neighboring molecules.

3.
Langmuir ; 31(10): 3086-93, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25720502

ABSTRACT

Interfacial properties of n-alkylsilane monolayers on silica have been investigated with molecular dynamics simulations using both reactive and classical (i.e., nonreactive) force fields. A synthesis mimetic simulation (SMS) procedure using the reactive force field ReaxFF has been developed to mimic the experimental processing of silicon wafers involved in the preparation of alkylsilane monolayers; in the SMS procedure, amorphous silica surfaces are generated and exposed to hydrogen peroxide (H2O2) to create a hydroxide surface layer. Alkylsilane monolayers are then assembled on these surfaces, and their behavior is studied. To investigate the impact of the SMS procedure on monolayer properties, simulations have also been performed using more idealized monolayers assembled on crystalline surfaces and non-H2O2-processed amorphous surfaces. The simulations reported here demonstrate that processing-induced silica surface roughness plays a key role in the structure and frictional performance of monolayers. Furthermore, ignoring these effects results in a significant underestimation of the coefficient of friction and an overestimation of the orientational ordering of the monolayers.

SELECTION OF CITATIONS
SEARCH DETAIL
...