Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 182: 108316, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37952412

ABSTRACT

Ultrafine particles and volatile organic compounds (VOCs) have been detected from material extrusion 3D printing, which is widely used in non-industrial environments. This study consolidates data of 447 particle emission and 58 VOC emission evaluations from a chamber study using a standardized testing method with various 3D printing scenarios. The interquartile ranges of the observed emission rates were 109-1011 #/h for particles and 0.2-1.0 mg/h for total VOC. Print material contributed largely to the variations of particle and total VOC emissions and determined the most abundantly emitted VOCs. Printing conditions and filament specifications, included printer brand, print temperature and speed, build plate heating setup, filament brand, color and composite, also affected emissions and resulted in large variations observed in emission profiles. Multiple regression showed that particle emissions were more impacted by various print conditions than VOC emissions. According to indoor exposure modeling, personal and residential exposure scenarios were more likely to result in high exposure levels, often exceeding recommended exposure limits. Hazardous VOCs commonly emitted from 3D printing included aromatics, aldehydes, alcohols, ketones, esters and siloxanes, among which were various carcinogens, irritants and developmental and reproductive toxins. Therefore, 3D printing emits a complex mixture of ultrafine particles and various hazardous chemicals, exposure to which may exceed recommended exposure limits and potentially induce acute, chronic, or developmental health effects for users depending on exposure scenarios.


Subject(s)
Air Pollution, Indoor , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Particulate Matter , Aldehydes , Ketones , Printing, Three-Dimensional
2.
J Thorac Dis ; 15(8): 4207-4215, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37691677

ABSTRACT

Background: Childhood Asthma Control Test (C-ACT) is a well-validated questionnaire for asthma controls among 4-11 years old children. This study aims to examine if longitudinal C-ACT score changes could also reflect lung pathophysiologic changes. Methods: Thirty-seven children (43% female) aged 5 to 10 years old with mild or moderate asthma were followed up for 6 weeks with bi-weekly assessments of C-ACT, airway mechanics, lung function and respiratory inflammation. Associations of longitudinal changes in C-ACT score with lung pathophysiologic indicators were evaluated using linear mixed-effects models. Results: A two-point worsening of total C-ACT score (sum of child and caregiver-reported) was associated with significant decreases in forced expiratory volume during the 1st second (FEV1) by 1.7% (P=0.04) and forced vital capacity (FVC) by 1.6% (P=0.01) and increased total airway resistance [airway resistance at 5 Hz (R5)] by 3.8% (P=0.05). A two-point worsening in child-reported score was significantly associated with 3.1% and 2.5% reductions in FEV1 and FVC, respectively, and with increases in R5 by 6.5% and large airway resistance [airway resistance at 20 Hz (R20)] by 5.5%. In contrast, a two-point worsening of caregiver-reported score was associated with none of the concurrent lung pathophysiologic measurements. Worsening of total C-ACT score was significantly associated with increased respiratory inflammation [fractional exhaled nitric oxide (FeNO)] in a subset (n=23) of children without eosinophilic airway inflammation. C-ACT scores were associated with none of the small airway measures. Conclusions: In children with mild or moderate asthma, longitudinal C-ACT score changes could reflect acute changes in large airway resistance and lung function. Measures of small airway physiology would provide valuable complementary information for asthma control. Asthma phenotype may affect whether C-ACT score could reflect respiratory inflammation.

3.
Sci Total Environ ; 860: 160512, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36442638

ABSTRACT

Material extrusion 3D printing has been widely used in industrial, educational and residential environments, while its exposure health impacts have not been well understood. High levels of ultrafine particles are found being emitted from 3D printing and could pose a hazard when inhaled. However, metals that potentially transfer from filament additives to emitted particles could also add to the exposure hazard, which have not been well characterized for their emissions. This study analyzed metal (and metalloid) compositions of raw filaments and in the emitted particles during printing; studied filaments included pure polymer filaments with metal additives and composite filaments with and without metal powder. Our chamber study found that crustal metals tended to have higher partitioning factors from filaments to emitted particles; silicon was the most abundant element in emitted particles and had the highest yield per filament mass. However, bronze and stainless-steel powder added in composite filaments were less likely to transfer from filament to particle. For some cases, boron, arsenic, manganese, and lead were only detected in particles, which indicated external sources, such as the printers themselves. Heavy metals with health concerns were also detected in emitted particles, while their estimated exposure concentrations in indoor air were below air quality standards and occupational regulations. However, total particle exposure concentrations estimated for indoor environments could exceed ambient air fine particulate standards.


Subject(s)
Air Pollution, Indoor , Particle Size , Powders , Air Pollution, Indoor/analysis , Particulate Matter , Metals/analysis , Printing, Three-Dimensional
5.
JAMA Pediatr ; 174(6): 533-542, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32250418

ABSTRACT

Importance: Fine particles (particulate matter 2.5 µm [PM2.5]), a ubiquitous air pollutant, can deposit in the small airways that play a vital role in asthma. It appears to be unknown whether the use of a PM2.5 filtration device can improve small airway physiology and respiratory inflammation in children with asthma. Objective: To discover what pathophysiological changes in the small airways are associated with using a PM2.5-removing device in the bedrooms of children with asthma. Design, Setting, and Participants: Children with mild or moderate asthma were enrolled in this double-blind, crossover study. The participants used a true filtration device and a sham filtration device in their bedrooms in a random order for 2 weeks each with a 2-week washout interval. The study was conducted in a suburb of Shanghai, China, during a low-ozone season. Exposures: Ozone and PM2.5 were measured inside bedrooms and outside a window. Main Outcomes and Measures: Impulse oscillometry, spirometry, and fractional exhaled nitric oxide were measured at the beginning and the end of each intervention. Peak expiratory flow was measured twice daily at home. Results: Forty-three children (5-13 years old; 26 boys [60%]) participated. Outdoor 24-hour mean PM2.5 concentrations were moderately high, ranging from 28.6 to 69.8 µg/m3 (median, 53 µg/m3). During true filtration, bedroom PM2.5 concentrations were a mean (SD) of 63.4% (35.9%) lower than during sham filtration. Compared with sham filtration, true filtration was significantly associated with improved airway mechanics, reflected in a 24.4% (95% CI, 11.8%-37.1%) reduction in total airway resistance, a 43.5% (95% CI, 13.7%-73.3%) reduction in small airway resistance, a 22.2% (95% CI, 2.2%-42.2%) reduction in resonant frequency, and a 73.1% (95% CI, 0.3%-145.8%) increase in airway reactance. True filtration was also associated with significant improvements in fractional exhaled nitric oxide (a 27.6% [95% CI, 8.9%-42.4%] reduction) and peak expiratory flow (a 1.6% [95% CI, 0.8%-2.5%] increase). These improvements were significantly associated with bedroom PM2.5 reduction. Improvements in small airway function were nonsignificant (8.4% [95% CI, -1.4% to 18.3%]) in all participants but significant (13.2% [95% CI, 1.2%-25.1%]) in participants without eosinophilic airway inflammation at baseline. No improvements were observed for forced vital capacity, forced expiratory volume during the first second, and the ratio of these in all participants or subgroups. Conclusions and Relevance: Per these results, indoor PM2.5 filtration can be a practical method to improve air flow in an asthmatic lung through improved airway mechanics and function as well as reduced inflammation. This warrants a clinical trial to confirm. Trial Registration: ClinicalTrials.gov Identifier: NCT03282864.


Subject(s)
Air Filters , Asthma/physiopathology , Environmental Exposure/analysis , Environmental Monitoring/methods , Housing , Particulate Matter/analysis , Adolescent , Child , Child, Preschool , Cross-Over Studies , Double-Blind Method , Female , Humans , Male
6.
Environ Sci Technol ; 53(20): 12054-12061, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31513393

ABSTRACT

Consumer-level 3D printers emit ultrafine and fine particles, though little is known about their chemical composition or potential toxicity. We report chemical characteristics of the particles in comparison to raw filaments and assessments of particle toxicity. Particles emitted from polylactic acid (PLA) appeared to be largely composed of the bulk filament material with mass spectra similar to the PLA monomer spectra. Acrylonitrile butadiene styrene (ABS), extruded at a higher temperature than PLA, emitted vastly more particles and their composition differed from that of the bulk filament, suggesting that trace additives may control particle formation. In vitro cellular assays and in vivo mice exposure all showed toxic responses when exposed to PLA and ABS-emitted particles, where PLA-emitted particles elicited higher response levels than ABS-emitted particles at comparable mass doses. A chemical assay widely used in ambient air-quality studies showed that particles from various filament materials had comparable particle oxidative potentials, slightly lower than those of ambient particulate matter (PM2.5). However, particle emissions from ABS filaments are likely more detrimental when considering overall exposure due to much higher emissions. Our results suggest that 3D printer particle emissions are not benign and exposures should be minimized.


Subject(s)
Acrylonitrile , Air Pollutants , Air Pollution, Indoor , Animals , Mice , Particle Size , Particulate Matter , Printing, Three-Dimensional , Styrene
SELECTION OF CITATIONS
SEARCH DETAIL
...