Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 15: 1389095, 2024.
Article in English | MEDLINE | ID: mdl-38846964

ABSTRACT

Toxicological risk assessment increasingly utilizes transcriptomics to derive point of departure (POD) and modes of action (MOA) for chemicals. One essential biological process that allows a single gene to generate several different RNA isoforms is called alternative splicing. To comprehensively assess the role of splicing dysregulation in toxicological evaluation and elucidate its potential as a complementary endpoint, we performed RNA-seq on A549 cells treated with five oxidative stress modulators across a wide dose range. Differential gene expression (DGE) showed limited pathway enrichment except at high concentrations. However, alternative splicing analysis revealed variable intron retention events affecting diverse pathways for all chemicals in the absence of significant expression changes. For instance, diazinon elicited negligible gene expression changes but progressive increase in the number of intron retention events, suggesting splicing alterations precede expression responses. Benchmark dose modeling of intron retention data highlighted relevant pathways overlooked by expression analysis. Systematic integration of splicing datasets should be a useful addition to the toxicogenomic toolkit. Combining both modalities paint a more complete picture of transcriptomic dose-responses. Overall, evaluating intron retention dynamics afforded by toxicogenomics may provide biomarkers that can enhance chemical risk assessment and regulatory decision making. This work highlights splicing-aware toxicogenomics as a possible additional tool for examining cellular responses.

2.
Toxicol Appl Pharmacol ; 489: 117013, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936668

ABSTRACT

To identify pathway perturbations and examine biological modes of action (MOAs) for various perfluoroalkyl substances, we re-analyzed published in vitro gene expression studies from human primary liver spheroids. With treatment times ranging from 10 to 14 days, shorter-chain PFAS (those with 6 or fewer fluorinated carbon atoms in the alkyl chain) showed enrichment for pathways of fatty acid metabolism and fatty acid beta-oxidation with upregulated genes. Longer-chain PFAS compounds, specifically PFOS (perfluorooctane sulfonate), PFDS (perfluorodecane sulfonate), and higher doses of PFOA (perfluorooctanoic acid), had enrichment for pathways involved in steroid metabolism, fatty acid metabolism, and biological oxidation for downregulated genes. Although PFNA (perfluorononanoic acid), PFDA (perfluorodecanoic acid), and PFUnDA (perfluoroundecanoic acid) were more toxic and could only be examined after a 1-day treatment, all three had enrichment patterns similar to those observed with PFOS. With PFOA there were dose-dependent changes in pathway enrichment, shifting from upregulation of fatty acid metabolism and downregulation of steroid metabolism to downregulation of both at higher doses. The response to PFHpS (perfluoroheptanesulfonic acid) was similar to the PFOA pattern at the lower treatment dose. Based on results of transcription factor binding sites analyses, we propose that downregulation of pathways of lipid metabolism by longer chain PFAS may be due to inhibitory interactions of PPARD on genes controlled by PPARA and PPARG. In conclusion, our transcriptomic analysis indicates that the biological MOAs of PFAS compounds differ according to chain length and dose, and that risk assessments for PFAS should consider these differences in biological MOAs when evaluating mixtures of these compounds.


Subject(s)
Dose-Response Relationship, Drug , Fluorocarbons , Hepatocytes , Spheroids, Cellular , Transcriptome , Humans , Fluorocarbons/toxicity , Hepatocytes/drug effects , Hepatocytes/metabolism , Transcriptome/drug effects , Spheroids, Cellular/drug effects , Gene Expression Profiling/methods , Alkanesulfonic Acids/toxicity
3.
Front Psychiatry ; 15: 1407474, 2024.
Article in English | MEDLINE | ID: mdl-38873536

ABSTRACT

Background: Negative body image and adverse body self-evaluation represent key psychological constructs within the realm of weight bias (WB), potentially intertwined with the negative self-evaluation characteristic of depressive symptomatology. Although WB encapsulates an implicit form of self-critical assessment, its exploration among people with mood disorders (MD) has been under-investigated. Our primary goal is to comprehensively assess both explicit and implicit WB, seeking to reveal specific dimensions that could interconnect with the symptoms of MDs. Methods: A cohort comprising 25 MD patients and 35 demographically matched healthy peers (with 83% female representation) participated in a series of tasks designed to evaluate the congruence between various computer-generated body representations and a spectrum of descriptive adjectives. Our analysis delved into multiple facets of body image evaluation, scrutinizing the associations between different body sizes and emotionally charged adjectives (e.g., active, apple-shaped, attractive). Results: No discernible differences emerged concerning body dissatisfaction or the correspondence of different body sizes with varying adjectives. Interestingly, MD patients exhibited a markedly higher tendency to overestimate their body weight (p = 0.011). Explicit WB did not show significant variance between the two groups, but MD participants demonstrated a notable implicit WB within a specific weight rating task for BMI between 18.5 and 25 kg/m2 (p = 0.012). Conclusions: Despite the striking similarities in the assessment of participants' body weight, our investigation revealed an implicit WB among individuals grappling with MD. This bias potentially assumes a role in fostering self-directed negative evaluations, shedding light on a previously unexplored facet of the interplay between WB and mood disorders.

4.
Sci Data ; 11(1): 497, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750064

ABSTRACT

Studies of quadruped animal motion help us to identify diseases, understand behavior and unravel the mechanics behind gaits in animals. The horse is likely the best-studied animal in this aspect, but data capture is challenging and time-consuming. Computer vision techniques improve animal motion extraction, but the development relies on reference datasets, which are scarce, not open-access and often provide data from only a few anatomical landmarks. Addressing this data gap, we introduce PFERD, a video and 3D marker motion dataset from horses using a full-body set-up of densely placed over 100 skin-attached markers and synchronized videos from ten camera angles. Five horses of diverse conformations provide data for various motions from basic poses (eg. walking, trotting) to advanced motions (eg. rearing, kicking). We further express the 3D motions with current techniques and a 3D parameterized model, the hSMAL model, establishing a baseline for 3D horse markerless motion capture. PFERD enables advanced biomechanical studies and provides a resource of ground truth data for the methodological development of markerless motion capture.


Subject(s)
Gait , Horses , Video Recording , Animals , Biomechanical Phenomena , Horses/physiology
5.
Toxicol Appl Pharmacol ; 487: 116956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735589

ABSTRACT

Single, high doses of TCDD in rats are known to cause wasting, a progressive loss of 30 to 50% body weight and death within several weeks. To identify pathway perturbations at or near doses causing wasting, we examined differentially gene expression (DGE) and pathway enrichment in centrilobular (CL) and periportal (PP) regions of female rat livers following 6 dose levels of TCDD - 0, 3, 22, 100, 300, and 1000 ng/kg/day, 5 days/week for 4 weeks. At the higher doses, rats lost weight, had increased liver/body weight ratios and nearly complete cessation of liver cell proliferation, signs consistent with wasting. DGE curves were left shifted for the CL versus the PP regions. Canonical Phase I and Phase II genes were maximally increased at lower doses and remained elevated at all doses. At lower doses, ≤ 22 ng/kg/day in the CL and ≤ 100 ng/kg/day, upregulated genes showed transcription factor (TF) enrichment for AHR and ARNT. At the mid- and high-dose doses, there was a large number of downregulated genes and pathway enrichment for DEGs which showed downregulation of many cellular metabolism processes including those for steroids, fatty acid metabolism, pyruvate metabolism and citric acid cycle. There was significant TF enrichment of the hi-dose downregulated genes for RXR, ESR1, LXR, PPARalpha. At the highest dose, there was also pathway enrichment with upregulated genes for extracellular matrix organization, collagen formation, hemostasis and innate immune system. TCDD demonstrates most of its effects through binding the aryl hydrocarbon receptor (AHR) while the downregulation of metabolism genes at higher TCDD doses is known to be independent of AHR binding to DREs. Based on our results with DEG, we provide a hypothesis for wasting in which high doses of TCDD shift circadian processes away from the resting state, leading to greatly reduced synthesis of steroids and complex lipids needed for cell growth, and producing gene expression signals consistent with an epithelial-to-mesenchymal transition in hepatocytes.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator , Liver , Polychlorinated Dibenzodioxins , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Female , Liver/drug effects , Liver/metabolism , Liver/pathology , Polychlorinated Dibenzodioxins/toxicity , Rats , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Circadian Rhythm/drug effects , Circadian Rhythm/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Transcriptome/drug effects , Gene Expression Profiling/methods , Rats, Sprague-Dawley , Dose-Response Relationship, Drug
6.
Brain Behav Evol ; : 1-14, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657588

ABSTRACT

INTRODUCTION: Pythons are a well-studied model of postprandial physiological plasticity. Consuming a meal evokes a suite of physiological changes in pythons including one of the largest documented increases in post-feeding metabolic rates relative to resting values. However, little is known about how this plasticity manifests in the brain. Previous work has shown that cell proliferation in the python brain increases 6 days following meal consumption. This study aimed to confirm these findings and build on them in the long term by tracking the survival and maturation of these newly created cells across a 2-month period. METHODS: We investigated differences in neural cell proliferation in ball pythons 6 days after a meal with immunofluorescence using the cell-birth marker 5-bromo-12'-deoxyuridine (BrdU). We investigated differences in neural cell maturation in ball pythons 2 months after a meal using double immunofluorescence for BrdU and a reptilian ortholog of the neuronal marker Fox3. RESULTS: We did not find significantly greater rates of cell proliferation in snakes 6 days after feeding, but we did observe more new cells in neurogenic regions in fed snakes 2 months after the meal. Feeding was not associated with higher rates of neurogenesis, but snakes that received a meal had higher numbers of newly created nonneuronal cells than fasted controls. We documented particularly high cell survival rates in the olfactory bulbs and lateral cortex. CONCLUSION: Consuming a meal stimulates cell proliferation in the brains of ball pythons after digestion is complete, although this effect emerged at a later time point in this study than expected. Higher rates of proliferation partially account for greater numbers of newly created non-neuronal cells in the brains of fed snakes 2 months after the meal, but our results also suggest that feeding may have a mild neuroprotective effect. We captured a slight trend toward higher cell survival rates in fed snakes, and survival rates were particularly high in brain regions associated with olfactory perception and processing. These findings shed light on the relationship between energy balance and the creation of new neural cells in the brains of ball pythons.

7.
Theor Appl Genet ; 137(3): 64, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430392

ABSTRACT

KEY MESSAGE: An improved estimator of genomic relatedness using low-depth high-throughput sequencing data for autopolyploids is developed. Its outputs strongly correlate with SNP array-based estimates and are available in the package GUSrelate. High-throughput sequencing (HTS) methods have reduced sequencing costs and resources compared to array-based tools, facilitating the investigation of many non-model polyploid species. One important quantity that can be computed from HTS data is the genetic relatedness between all individuals in a population. However, HTS data are often messy, with multiple sources of errors (i.e. sequencing errors or missing parental alleles) which, if not accounted for, can lead to bias in genomic relatedness estimates. We derive a new estimator for constructing a genomic relationship matrix (GRM) from HTS data for autopolyploid species that accounts for errors associated with low sequencing depths, implemented in the R package GUSrelate. Simulations revealed that GUSrelate performed similarly to existing GRM methods at high depth but reduced bias in self-relatedness estimates when the sequencing depth was low. Using a panel consisting of 351 tetraploid potato genotypes, we found that GUSrelate produced GRMs from genotyping-by-sequencing (GBS) data that were highly correlated with a GRM computed from SNP array data, and less biased than existing methods when benchmarking against the array-based GRM estimates. GUSrelate provides researchers with a tool to reliably construct GRMs from low-depth HTS data.


Subject(s)
Genotyping Techniques , Polymorphism, Single Nucleotide , Humans , Genotyping Techniques/methods , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Alleles
8.
Nat Commun ; 14(1): 8444, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114498

ABSTRACT

RNA splicing is an important biological process associated with cancer initiation and progression. However, the contribution of alternative splicing to pancreatic cancer (PDAC) development is not well understood. Here, we identify an enrichment of RNA binding proteins (RBPs) involved in splicing regulation linked to PDAC progression from a forward genetic screen using Sleeping Beauty insertional mutagenesis in a mouse model of pancreatic cancer. We demonstrate downregulation of RBFOX2, an RBP of the FOX family, promotes pancreatic cancer progression and liver metastasis. Specifically, we show RBFOX2 regulates exon splicing events in transcripts encoding proteins involved in cytoskeletal remodeling programs. These exons are differentially spliced in PDAC patients, with enhanced exon skipping in the classical subtype for several RBFOX2 targets. RBFOX2 mediated splicing of ABI1, encoding the Abelson-interactor 1 adapter protein, controls the abundance and localization of ABI1 protein isoforms in pancreatic cancer cells and promotes the relocalization of ABI1 from the cytoplasm to the periphery of migrating cells. Using splice-switching antisense oligonucleotides (AONs) we demonstrate the ABI1 ∆Ex9 isoform enhances cell migration. Together, our data identify a role for RBFOX2 in promoting PDAC progression through alternative splicing regulation.


Subject(s)
Alternative Splicing , Pancreatic Neoplasms , Mice , Animals , Humans , Alternative Splicing/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA Splicing , Protein Isoforms/genetics , Pancreatic Neoplasms/genetics , Repressor Proteins/metabolism , Cytoskeletal Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL