Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Geroscience ; 46(1): 1271-1284, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37535204

ABSTRACT

Tristetraprolin (TTP), encoded by Zfp36 in mice, is one of the best-characterized tandem zinc-finger mRNA binding proteins involved in mRNA deadenylation and decay. TTPΔARE mice lack an AU-rich motif in the 3'-untranslated regions of TTP mRNA, leading to increased TTP mRNA stability and more TTP protein, resulting in elevated mRNA decay rates of TTP targets. We examined the effect of TTP overexpression on the hematopoietic system in both young and middle-aged mice using TTPΔARE mice and found alterations in blood cell frequencies, with loss of platelets and B220 cells and gains of eosinophils and T cells. TTPΔARE mice also have skewed primitive populations in the bone marrow, with increases in myeloid-biased hematopoietic stem cells (HSCs) but decreases in granulocyte/macrophage-biased multipotent progenitors (MPP3) in both young and middle-aged mice. Changes in the primitive cells' frequencies were associated with transcriptional alterations in the TTP overexpression cells specific to age as well as cell type. Regardless of age, there was a consistent elevation of transcripts regulated by TNFα and TGFß signaling pathways in both the stem and multipotent progenitor populations. HSCs with TTP overexpression had decreased reconstitution potential in murine transplants but generated hematopoietic environments that mitigated the inflammatory response to the collagen antibody-induced arthritis (CAIA) challenge, which models rheumatoid arthritis and other autoimmune disorders. This dampening of the inflammatory response was even present when there was only a small frequency of TTP overexpressing cells present in the middle-aged mice. We provide an analysis of the early hematopoietic compartments with elevated TTP expression in both young and middle-aged mice which inhibits the reconstitution potential of the HSCs but generates a hematopoietic system that provides dominant repression of induced inflammation.


Subject(s)
Hematopoietic System , Tristetraprolin , Animals , Mice , 3' Untranslated Regions , Disease Models, Animal , Hematopoietic System/metabolism , Inflammation/genetics , Mice, Knockout , Tristetraprolin/genetics , Tristetraprolin/metabolism
2.
Methods Mol Biol ; 2723: 173-191, 2024.
Article in English | MEDLINE | ID: mdl-37824071

ABSTRACT

Removal of the poly(A) tail, or deadenylation, is a crucial step in destabilizing mRNAs in eukaryotes. In this chapter, we describe a cell-free deadenylation assay that uses cytoplasmic cell extracts from human HEK293 cells transiently transfected with DNA encoding RNA-binding proteins (RBP), and in vitro-transcribed, radiolabeled, RNA probes. We include methods to evaluate the effects of RBPs or deadenylases on various in vitro-transcribed probes, with or without poly(A) tails. Finally, we also demonstrate the adaptability of these assays to test purified protein components in our cell-free deadenylation assay. In our experience, these methods are well suited for the initial assessment of the effects of RBPs on the deadenylation of mRNAs.


Subject(s)
RNA-Binding Proteins , RNA , Animals , Humans , Cell Extracts , HEK293 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , RNA Stability , Poly A/metabolism , Mammals/genetics
3.
Life Sci Alliance ; 7(1)2024 01.
Article in English | MEDLINE | ID: mdl-37903626

ABSTRACT

Members of the tristetraprolin (TTP) family of RNA-binding proteins can bind to and promote the decay of specific transcripts containing AU-rich motifs. ZFP36 (TTP) is best known for regulating pro-inflammatory cytokine expression in myeloid cells; however, its mammalian paralogues ZFP36L1 and ZFP36L2 have not been viewed as important in controlling inflammation. We knocked out these genes in myeloid cells in mice, singly and together. Single-gene myeloid-specific knockouts resulted in almost no spontaneous phenotypes. In contrast, mice with myeloid cell deficiency of all three genes developed severe inflammation, with a median survival of 8 wk. Macrophages from these mice expressed many more stabilized transcripts than cells from myeloid-specific TTP knockout mice; many of these encoded pro-inflammatory cytokines and chemokines. The failure of weight gain, arthritis, and early death could be prevented completely by two normal alleles of any of the three paralogues, and even one normal allele of Zfp36 or Zfp36l2 was enough to prevent the inflammatory phenotype. Our findings emphasize the importance of all three family members, acting in concert, in myeloid cell function.


Subject(s)
Inflammation , Tristetraprolin , Mice , Animals , Tristetraprolin/genetics , Tristetraprolin/metabolism , Inflammation/genetics , Inflammation/metabolism , Myeloid Cells/metabolism , Macrophages/metabolism , Mice, Knockout , Cytokines/metabolism , Mammals/metabolism
4.
FASEB J ; 38(1): e23338, 2024 01.
Article in English | MEDLINE | ID: mdl-38038723

ABSTRACT

Tristetraprolin (TTP; also known as NUP475, GOS24, or TIS11), encoded by Zfp36, is an RNA-binding protein that regulates target gene expression by promoting mRNA decay and preventing translation. Although previous studies have indicated that TTP deficiency is associated with systemic inflammation and a catabolic-like skeletal phenotype, the mechanistic underpinnings remain unclear. Here, using both TTP-deficient (TTPKO) and myeloid-specific TTPKO (cTTPKO) mice, we reveal that global absence or loss of TTP in the myeloid compartment results in a reduced bone microarchitecture, whereas gain-of-function TTP knock-in (TTPKI) mice exhibit no significant loss of bone microarchitecture. Flow cytometry analysis revealed a significant immunosuppressive immune cell phenotype with increased monocytic myeloid-derived suppressor cells (M-MDSCs) in TTPKO and cTTPKO mice, whereas no significant changes were observed in TTPKI mice. Single-cell transcriptomic analyses of bone marrow myeloid progenitor cell populations indicated a dramatic increase in early MDSC marker genes for both cTTPKO and TTPKO bone marrow populations. Consistent with these phenotypic and transcriptomic data, in vitro osteoclastogenesis analysis of bone marrow M-MDSCs from cTTPKO and TTPKO displayed enhanced osteoclast differentiation and functional capacity. Focused transcriptomic analyses of differentiated M-MDSCs showed increased osteoclast-specific transcription factors and cell fusion gene expression. Finally, functional data showed that M-MDSCs from TTP loss-of-function mice were capable of osteoclastogenesis and bone resorption in a context-dependent manner. Collectively, these findings indicate that TTP plays a central role in regulating osteoclastogenesis through multiple mechanisms, including induction of M-MDSCs that appear to regulate skeletal phenotype.


Subject(s)
Myeloid-Derived Suppressor Cells , Tristetraprolin , Animals , Mice , Osteoclasts/metabolism , Osteogenesis , Phenotype , Tristetraprolin/genetics
5.
FASEB J ; 37(8): e23100, 2023 08.
Article in English | MEDLINE | ID: mdl-37462673

ABSTRACT

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that stimulates the proliferation and differentiation of granulocyte and macrophage precursors. The mouse gene-encoding GM-CSF, Csf2, is regulated at both transcriptional and post-transcriptional levels. An adenine-uridine-rich element (ARE) within the 3'-untranslated region of Csf2 mRNA was shown in cell transfection studies to confer instability on this transcript. To explore the physiological importance of this element in an intact animal, we generated mice with a knock-in deletion of the 75-nucleotide ARE. Mice heterozygous for this ARE deletion developed severe respiratory distress and death within about 12 weeks of age. There was dense infiltration of lung alveolar spaces by crystal-containing macrophages. Increased stability of Csf2 mRNA was confirmed in bone marrow-derived macrophages, and elevated GM-CSF levels were observed in serum and lung. These mice did not exhibit notable abnormalities in blood or bone marrow, and transplantation of bone marrow from mutant mice into lethally irradiated WT mice did not confer the pulmonary phenotype. Mice with a conditional deletion of the ARE restricted to lung type II alveolar cells exhibited an essentially identical lethal lung phenotype at the same ages as the mice with the whole-body deletion. In contrast, mice with the same conditional ARE deletion in myeloid cells, including macrophages, exhibited lesser degrees of macrophage infiltration into alveolar spaces much later in life, at approximately 9 months of age. Post-transcriptional Csf2 mRNA stability regulation in pulmonary alveolar epithelial cells appears to be essential for normal physiological GM-CSF secretion and pulmonary macrophage homeostasis.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Pneumonia , Animals , Mice , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Lung/metabolism , Macrophages, Alveolar/metabolism , Pneumonia/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Sci Immunol ; 7(76): eabo0981, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36269839

ABSTRACT

RNA binding proteins are important regulators of T cell activation, proliferation, and cytokine production. The zinc finger protein 36 (ZFP36) family genes (Zfp36, Zfp36l1, and Zfp36l2) encode RNA binding proteins that promote the degradation of transcripts containing AU-rich elements. Numerous studies have demonstrated both individual and shared functions of the ZFP36 family in immune cells, but their collective function in T cells remains unclear. Here, we found a redundant and critical role for the ZFP36 proteins in regulating T cell quiescence. T cell-specific deletion of all three ZFP36 family members in mice resulted in early lethality, immune cell activation, and multiorgan pathology characterized by inflammation of the eyes, central nervous system, kidneys, and liver. Mice with T cell-specific deletion of any two Zfp36 genes were protected from this spontaneous syndrome. Triply deficient T cells overproduced proinflammatory cytokines, including IFN-γ, TNF, and GM-CSF, due to increased mRNA stability of these transcripts. Unexpectedly, T cell-specific deletion of both Zfp36l1 and Zfp36l2 rendered mice resistant to experimental autoimmune encephalomyelitits due to failed priming of antigen-specific CD4+ T cells. ZFP36L1 and ZFP36L2 double-deficient CD4+ T cells had poor proliferation during in vitro T helper cell polarization. Thus, the ZFP36 family redundantly regulates T cell quiescence at homeostasis, but ZFP36L1 and ZFP36L2 are specifically required for antigen-specific T cell clonal expansion.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , T-Lymphocytes , Tristetraprolin , Animals , Mice , Cytokines/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Homeostasis , RNA-Binding Proteins/genetics , Tristetraprolin/genetics , Tristetraprolin/metabolism
7.
Front Immunol ; 13: 1002163, 2022.
Article in English | MEDLINE | ID: mdl-36263047

ABSTRACT

Aging results in enhanced myelopoiesis, which is associated with an increased prevalence of myeloid leukemias and the production of myeloid-derived suppressor cells (MDSCs). Tristetraprolin (TTP) is an RNA binding protein that regulates immune-related cytokines and chemokines by destabilizing target mRNAs. As TTP expression is known to decrease with age in myeloid cells, we used TTP-deficient (TTPKO) mice to model aged mice to study TTP regulation in age-related myelopoiesis. Both TTPKO and myeloid-specific TTPKO (cTTPKO) mice had significant increases in both MDSC subpopulations M-MDSCs (CD11b+Ly6ChiLy6G-) and PMN-MDSCs (CD11b+Ly6CloLy6G+), as well as macrophages (CD11b+F4/80+) in the spleen and mesenteric lymph nodes; however, no quantitative changes in MDSCs were observed in the bone marrow. In contrast, gain-of-function TTP knock-in (TTPKI) mice had no change in MDSCs compared with control mice. Within the bone marrow, total granulocyte-monocyte progenitors (GMPs) and monocyte progenitors (MPs), direct antecedents of M-MDSCs, were significantly increased in both cTTPKO and TTPKO mice, but granulocyte progenitors (GPs) were significantly increased only in TTPKO mice. Transcriptomic analysis of the bone marrow myeloid cell populations revealed that the expression of CC chemokine receptor 2 (CCR2), which plays a key role in monocyte mobilization to inflammatory sites, was dramatically increased in both cTTPKO and TTPKO mice. Concurrently, the concentration of CC chemokine ligand 2 (CCL2), a major ligand of CCR2, was high in the serum of cTTPKO and TTPKO mice, suggesting that TTP impacts the mobilization of M-MDSCs from the bone marrow to inflammatory sites during aging via regulation of the CCR2-CCL2 axis. Collectively, these studies demonstrate a previously unrecognized role for TTP in regulating age-associated myelopoiesis through the expansion of specific myeloid progenitors and M-MDSCs and their recruitment to sites of injury, inflammation, or other pathologic perturbations.


Subject(s)
Myeloid-Derived Suppressor Cells , Mice , Animals , Myeloid-Derived Suppressor Cells/metabolism , Receptors, CCR2/genetics , Tristetraprolin/genetics , Tristetraprolin/metabolism , Ligands , Chemokines/metabolism , Cytokines/metabolism , Chemokines, CC/metabolism
8.
Mol Metab ; 61: 101512, 2022 07.
Article in English | MEDLINE | ID: mdl-35550189

ABSTRACT

BACKGROUND/PURPOSE: Adipose tissue contains progenitor cells that contribute to beneficial tissue expansion when needed by de novo adipocyte formation (classical white or beige fat cells with thermogenic potential). However, in chronic obesity, they can exhibit an activated pro-fibrotic, extracellular matrix (ECM)-depositing phenotype that highly aggravates obesity-related adipose tissue dysfunction. METHODS: Given that progenitors' fibrotic activation and fat cell browning appear to be antagonistic cell fates, we have examined the anti-fibrotic potential of pro-browning agents in an obesogenic condition. RESULTS: In obese mice fed a high fat diet, thermoneutral housing, which induces brown fat cell dormancy, increases the expression of ECM gene programs compared to conventionally raised animals, indicating aggravation of obesity-related tissue fibrosis at thermoneutrality. In a model of primary cultured murine adipose progenitors, we found that exposure to ß-hydroxybutyrate selectively reduced Tgfß-dependent profibrotic responses of ECM genes like Ctgf, Loxl2 and Fn1. This effect is observed in both subcutaneous and visceral-derived adipose progenitors, as well as in 3T3-L1 fibroblasts. In 30 patients with obesity eligible for bariatric surgery, those with higher circulating ß-hydroxybutyrate levels have lower subcutaneous adipose tissue fibrotic scores. Mechanistically, ß-hydroxybutyrate limits Tgfß-dependent collagen accumulation and reduces Smad2-3 protein expression and phosphorylation in visceral progenitors. Moreover, ß-hydroxybutyrate induces the expression of the ZFP36 gene, encoding a post-transcriptional regulator that promotes the degradation of mRNA by binding to AU-rich sites within 3'UTRs. Importantly, complete ZFP36 deficiency in a mouse embryonic fibroblast line from null mice, or siRNA knock-down in primary progenitors, indicate that ZFP36 is required for ß-hydroxybutyrate anti-fibrotic effects. CONCLUSION: These data unravel the potential of ß-hydroxybutyrate to limit adipose tissue matrix deposition, a finding that might exploited in an obesogenic context.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Fibroblasts/metabolism , Fibrosis , Humans , Mice , Obesity/metabolism , Transforming Growth Factor beta/metabolism , Tristetraprolin/metabolism
9.
Pharmacol Ther ; 239: 108198, 2022 11.
Article in English | MEDLINE | ID: mdl-35525391

ABSTRACT

Abnormal regulation of pro-inflammatory cytokine and chemokine mediators can contribute to the excess inflammation characteristic of many autoimmune diseases, such as rheumatoid arthritis, psoriasis, Crohn's disease, type 1 diabetes, and many others. The tristetraprolin (TTP) family consists of a small group of related RNA-binding proteins that bind to preferred AU-rich binding sites within the 3'-untranslated regions of specific mRNAs to promote mRNA deadenylation and decay. TTP deficient mice develop a severe systemic inflammatory syndrome consisting of arthritis, myeloid hyperplasia, dermatitis, autoimmunity and cachexia, due at least in part to the excess accumulation of proinflammatory chemokine and cytokine mRNAs and their encoded proteins. To investigate the possibility that increased TTP expression or activity might have a beneficial effect on inflammatory diseases, at least two mouse models have been developed that provide proof of principle that increasing TTP activity can promote the decay of pro-inflammatory and other relevant transcripts, and decrease the severity of mouse models of inflammatory disease. Animal studies of this type are summarized here, and we briefly review the prospects for harnessing these insights for the development of TTP-based anti-inflammatory treatments in humans.


Subject(s)
Autoimmune Diseases , Tristetraprolin , Humans , Mice , Animals , Tristetraprolin/genetics , Tristetraprolin/metabolism , RNA, Messenger/metabolism , Inflammation/metabolism , Cytokines
10.
J Clin Invest ; 132(10)2022 05 16.
Article in English | MEDLINE | ID: mdl-35316214

ABSTRACT

Pregnancy is associated with substantial physiological changes of the heart, and disruptions in these processes can lead to peripartum cardiomyopathy (PPCM). The molecular processes that cause physiological and pathological changes in the heart during pregnancy are not well characterized. Here, we show that mTORc1 was activated in pregnancy to facilitate cardiac enlargement that was reversed after delivery in mice. mTORc1 activation in pregnancy was negatively regulated by the mRNA-destabilizing protein ZFP36L2 through its degradation of Mdm2 mRNA and P53 stabilization, leading to increased SESN2 and REDD1 expression. This pathway impeded uncontrolled cardiomyocyte hypertrophy during pregnancy, and mice with cardiac-specific Zfp36l2 deletion developed rapid cardiac dysfunction after delivery, while prenatal treatment of these mice with rapamycin improved postpartum cardiac function. Collectively, these data provide what we believe to be a novel pathway for the regulation of mTORc1 through mRNA stabilization of a P53 ubiquitin ligase. This pathway was critical for normal cardiac growth during pregnancy, and its reduction led to PPCM-like adverse remodeling in mice.


Subject(s)
Cardiomyopathies , Mechanistic Target of Rapamycin Complex 1 , Nuclear Proteins , Pregnancy Complications, Cardiovascular , Transcription Factors , Tumor Suppressor Protein p53 , Animals , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Female , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Peripartum Period , Peroxidases/genetics , Peroxidases/metabolism , Pregnancy , Pregnancy Complications, Cardiovascular/metabolism , Pregnancy Complications, Cardiovascular/therapy , RNA, Messenger/metabolism , Transcription Factors/metabolism , Tristetraprolin/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
11.
Biomol NMR Assign ; 16(1): 153-158, 2022 04.
Article in English | MEDLINE | ID: mdl-35279790

ABSTRACT

Members of the tristetraprolin (TTP) family of RNA binding proteins (RBPs) regulate the metabolism of a variety of mRNA targets. In mammals, these proteins modulate many physiological processes, including immune cell activation, hematopoiesis, and embryonic development. Regulation of mRNA stability by these proteins requires that the tandem zinc finger (TZF) domain binds initially and directly to target mRNAs, ultimately leading to their deadenylation and decay. Proteins of this type throughout eukarya possess a highly conserved TZF domain, suggesting that they are all capable of high-affinity RNA binding. However, the mechanism of TTP-mediated mRNA decay is largely undefined. Given the vital role that these TTP family proteins play in maintaining RNA homeostasis throughout eukaryotes, we focused here on the first, key step in this process: recognition and binding of the TZF domain to target RNA. For these studies, we chose a primitive plant, the spikemoss Selaginella moellendorffii, which last shared a common ancestor with humans more than a billion years ago. Here we report the near complete backbone and side chain resonance assignments of the spikemoss TZF domain, including: (1) the assignment of the RNA-TZF domain complex, representing one of only two data sets currently available for the entire TTP family of proteins; and (2) the first NMR resonance assignments of the entire TZF domain, in the RNA-free form. This work will serve as the basis for further NMR structural investigations aimed at gaining insights into the process of RNA recognition and the mechanisms of TTP-mediated mRNA decay.


Subject(s)
Selaginellaceae , Tristetraprolin , Animals , Family , Humans , Mammals/genetics , Mammals/metabolism , Nuclear Magnetic Resonance, Biomolecular , RNA , RNA, Messenger/genetics , RNA, Messenger/metabolism , Selaginellaceae/genetics , Selaginellaceae/metabolism , Tristetraprolin/chemistry , Tristetraprolin/genetics , Tristetraprolin/metabolism , Zinc Fingers/genetics
12.
Am J Pathol ; 192(2): 208-225, 2022 02.
Article in English | MEDLINE | ID: mdl-34774847

ABSTRACT

Zinc finger protein 36 like 1 (ZFP36L1) enhances the turnover of mRNAs containing AU-rich elements (AREs) in their 3'-untranslated regions (3'UTR). The physiological and pathological functions of ZFP36L1 in liver, however, remain largely unknown. Liver-specific ZFP36L1-deficient (Zfp36l1flox/flox/Cre+; L1LKO) mice were generated to investigate the role of ZFP36L1 in liver physiology and pathology. Under normal conditions, the L1LKO mice and their littermate controls (Zfp36l1flox/flox/Cre-; L1FLX) appeared normal. When fed a Lieber-DeCarli liquid diet containing alcohol, L1LKO mice were significantly protected from developing alcohol-induced hepatic steatosis, injury, and inflammation compared with L1FLX mice. Most importantly, fibroblast growth factor 21 (Fgf21) mRNA was significantly increased in the livers of alcohol diet-fed L1LKO mice compared with the alcohol diet-fed L1FLX group. The Fgf21 mRNA contains three AREs in its 3'UTR, and Fgf21 3'UTR was directly regulated by ZFP36L1 in luciferase reporter assays. Steady-state levels of Fgf21 mRNA were significantly decreased by wild-type ZFP36L1, but not by a non-binding zinc finger ZFP36L1 mutant. Finally, wild-type ZFP36L1, but not the ZFP36L1 mutant, bound to the Fgf21 3'UTR ARE RNA probe. These results demonstrate that ZFP36L1 inactivation protects against alcohol-induced hepatic steatosis and liver injury and inflammation, possibly by stabilizing Fgf21 mRNA. These findings suggest that the modulation of ZFP36L1 may be beneficial in the prevention or treatment of human alcoholic liver disease.


Subject(s)
3' Untranslated Regions , Butyrate Response Factor 1/metabolism , Fatty Liver, Alcoholic/metabolism , Fibroblast Growth Factors/metabolism , Liver/metabolism , RNA Stability , Animals , Butyrate Response Factor 1/genetics , Fatty Liver, Alcoholic/genetics , Fatty Liver, Alcoholic/pathology , Fibroblast Growth Factors/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Liver/pathology , Mice , Mice, Knockout , Mutation
13.
Nucleic Acids Res ; 49(20): 11920-11937, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34718768

ABSTRACT

Post-transcriptional processes mediated by mRNA binding proteins represent important control points in gene expression. In eukaryotes, mRNAs containing specific AU-rich motifs are regulated by binding of tristetraprolin (TTP) family tandem zinc finger proteins, which promote mRNA deadenylation and decay, partly through interaction of a conserved C-terminal CNOT1 binding (CNB) domain with CCR4-NOT protein complexes. The social ameba Dictyostelium discoideum shared a common ancestor with humans more than a billion years ago, and expresses only one TTP family protein, TtpA, in contrast to three members expressed in humans. Evaluation of ttpA null-mutants identified six transcripts that were consistently upregulated compared to WT during growth and early development. The 3'-untranslated regions (3'-UTRs) of all six 'TtpA-target' mRNAs contained multiple TTP binding motifs (UUAUUUAUU), and one 3'-UTR conferred TtpA post-transcriptional stability regulation to a heterologous mRNA that was abrogated by mutations in the core TTP-binding motifs. All six target transcripts were upregulated to similar extents in a C-terminal truncation mutant, in contrast to less severe effects of analogous mutants in mice. All six target transcripts encoded probable membrane proteins. In Dictyostelium, TtpA may control an 'RNA regulon', where a single RNA binding protein, TtpA, post-transcriptionally co-regulates expression of several functionally related proteins.


Subject(s)
Dictyostelium/genetics , Protozoan Proteins/metabolism , Regulon , Tristetraprolin/metabolism , 3' Untranslated Regions , Dictyostelium/metabolism , Mutation , Protozoan Proteins/genetics , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tristetraprolin/genetics
14.
Int J Mol Sci ; 22(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34502288

ABSTRACT

Thyroid hormone levels are usually genetically determined. Thyrocytes produce a unique set of enzymes that are dedicated to thyroid hormone synthesis. While thyroid transcriptional regulation is well-characterized, post-transcriptional mechanisms have been less investigated. Here, we describe the involvement of ZFP36L2, a protein that stimulates degradation of target mRNAs, in thyroid development and function, by in vivo and in vitro gene targeting in thyrocytes. Thyroid-specific Zfp36l2-/- females were hypothyroid, with reduced levels of circulating free Thyroxine (cfT4) and Triiodothyronine (cfT3). Their hypothyroidism was due to dyshormonogenesis, already evident one week after weaning, while thyroid development appeared normal. We observed decreases in several thyroid-specific transcripts and proteins, such as Nis and its transcriptional regulators (Pax8 and Nkx2.1), and increased apoptosis in Zfp36l2-/- thyroids. Nis, Pax8, and Nkx2.1 mRNAs were also reduced in Zfp36l2 knock-out thyrocytes in vitro (L2KO), in which we confirmed the increased apoptosis. Finally, in L2KO cells, we showed an altered response to TSH stimulation regarding both thyroid-specific gene expression and cell proliferation and survival. This result was supported by increases in P21/WAF1 and p-P38MAPK levels. Mechanistically, we confirmed Notch1 as a target of ZFP36L2 in the thyroid since its levels were increased in both in vitro and in vivo models. In both models, the levels of Id4 mRNA, a potential inhibitor of Pax8 activity, were increased. Overall, the data indicate that the regulation of mRNA stability by ZFP36L2 is a mechanism that controls the function and survival of thyrocytes.


Subject(s)
Thyroid Gland/physiology , Tristetraprolin/physiology , Animals , Apoptosis/physiology , Cell Line , Cell Survival , Female , Gene Deletion , Gene Expression Regulation , Mice, Inbred C57BL , Mice, Mutant Strains , PAX8 Transcription Factor/genetics , Rats , Receptor, Notch1/metabolism , Thyroid Gland/cytology , Thyroid Gland/drug effects , Thyrotropin/pharmacology , Tristetraprolin/genetics
15.
Cell Mol Gastroenterol Hepatol ; 12(5): 1831-1845, 2021.
Article in English | MEDLINE | ID: mdl-34358715

ABSTRACT

BACKGROUND & AIMS: Aberrant immune activation is associated with numerous inflammatory and autoimmune diseases and contributes to cancer development and progression. Within the stomach, inflammation drives a well-established sequence from gastritis to metaplasia, eventually resulting in adenocarcinoma. Unfortunately, the processes that regulate gastric inflammation and prevent carcinogenesis remain unknown. Tristetraprolin (TTP) is an RNA-binding protein that promotes the turnover of numerous proinflammatory and oncogenic messenger RNAs. Here, we assess the role of TTP in regulating gastric inflammation and spasmolytic polypeptide-expressing metaplasia (SPEM) development. METHODS: We used a TTP-overexpressing model, the TTPΔadenylate-uridylate rich element mouse, to examine whether TTP can protect the stomach from adrenalectomy (ADX)-induced gastric inflammation and SPEM. RESULTS: We found that TTPΔadenylate-uridylate rich element mice were completely protected from ADX-induced gastric inflammation and SPEM. RNA sequencing 5 days after ADX showed that TTP overexpression suppressed the expression of genes associated with the innate immune response. Importantly, TTP overexpression did not protect from high-dose-tamoxifen-induced SPEM development, suggesting that protection in the ADX model is achieved primarily by suppressing inflammation. Finally, we show that protection from gastric inflammation was only partially due to the suppression of Tnf, a well-known TTP target. CONCLUSIONS: Our results show that TTP exerts broad anti-inflammatory effects in the stomach and suggest that therapies that increase TTP expression may be effective treatments of proneoplastic gastric inflammation. Transcript profiling: GSE164349.


Subject(s)
Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Inflammation/complications , Metaplasia/etiology , Metaplasia/pathology , Metaplasia/prevention & control , Tristetraprolin/genetics , Animals , Biomarkers , Disease Models, Animal , Disease Susceptibility , Fluorescent Antibody Technique , Gene Expression Regulation , Immunohistochemistry , Inflammation/etiology , Inflammation/metabolism , Metaplasia/metabolism , Mice , Mice, Knockout , Tamoxifen/administration & dosage , Tamoxifen/adverse effects
16.
JCI Insight ; 6(5)2021 03 08.
Article in English | MEDLINE | ID: mdl-33497366

ABSTRACT

Cancer is caused primarily by genomic alterations resulting in deregulation of gene regulatory circuits in key growth, apoptosis, or DNA repair pathways. Multiple genes associated with the initiation and development of tumors are also regulated at the level of mRNA decay, through the recruitment of RNA-binding proteins to AU-rich elements (AREs) located in their 3'-untranslated regions. One of these ARE-binding proteins, tristetraprolin (TTP; encoded by Zfp36), is consistently dysregulated in many human malignancies. Herein, using regulated overexpression or conditional ablation in the context of cutaneous chemical carcinogenesis, we show that TTP represents a critical regulator of skin tumorigenesis. We provide evidence that TTP controlled both tumor-associated inflammation and key oncogenic pathways in neoplastic epidermal cells. We identify Areg as a direct target of TTP in keratinocytes and show that EGFR signaling potentially contributed to exacerbated tumor formation. Finally, single-cell RNA-Seq analysis indicated that ZFP36 was downregulated in human malignant keratinocytes. We conclude that TTP expression by epidermal cells played a major role in the control of skin tumorigenesis.


Subject(s)
Carcinogenesis/metabolism , Keratinocytes/metabolism , Skin Neoplasms/metabolism , Skin/metabolism , Tristetraprolin/metabolism , 3' Untranslated Regions , AU Rich Elements , Animals , Carcinogenesis/genetics , Disease Models, Animal , Down-Regulation , ErbB Receptors/metabolism , Gene Regulatory Networks , Humans , Inflammation/metabolism , Mice, Inbred C57BL , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Skin Neoplasms/genetics
17.
Front Genet ; 12: 818697, 2021.
Article in English | MEDLINE | ID: mdl-35154260

ABSTRACT

Alternative polyadenylation (APA) is widespread among metazoans and has been shown to have important impacts on mRNA stability and protein expression. Beyond a handful of well-studied organisms, however, its existence and consequences have not been well investigated. We therefore turned to the deep-branching red alga, Cyanidioschyzon merolae, to study the biology of polyadenylation in an organism highly diverged from humans and yeast. C. merolae is an acidothermophilic alga that lives in volcanic hot springs. It has a highly reduced genome (16.5 Mbp) and has lost all but 27 of its introns and much of its splicing machinery, suggesting that it has been under substantial pressure to simplify its RNA processing pathways. We used long-read sequencing to assess the key features of C. merolae mRNAs, including splicing status and polyadenylation cleavage site (PAS) usage. Splicing appears to be less efficient in C. merolae compared with yeast, flies, and mammalian cells. A high proportion of transcripts (63%) have at least two distinct PAS's, and 34% appear to utilize three or more sites. The apparent polyadenylation signal UAAA is used in more than 90% of cases, in cells grown in both rich media or limiting nitrogen. Our documentation of APA for the first time in this non-model organism highlights its conservation and likely biological importance of this regulatory step in gene expression.

18.
Cell Mol Gastroenterol Hepatol ; 11(2): 597-621, 2021.
Article in English | MEDLINE | ID: mdl-32987153

ABSTRACT

BACKGROUND & AIMS: Tristetraprolin (TTP) is a key post-transcriptional regulator of inflammatory and oncogenic transcripts. Accordingly, TTP was reported to act as a tumor suppressor in specific cancers. Herein, we investigated how TTP contributes to the development of liver inflammation and fibrosis, which are key drivers of hepatocarcinogenesis, as well as to the onset and progression of hepatocellular carcinoma (HCC). METHODS: TTP expression was investigated in mouse/human models of hepatic metabolic diseases and cancer. The role of TTP in nonalcoholic steatohepatitis and HCC development was further examined through in vivo/vitro approaches using liver-specific TTP knockout mice and a panel of hepatic cancer cells. RESULTS: Our data demonstrate that TTP loss in vivo strongly restrains development of hepatic steatosis and inflammation/fibrosis in mice fed a methionine/choline-deficient diet, as well as HCC development induced by the carcinogen diethylnitrosamine. In contrast, low TTP expression fostered migration and invasion capacities of in vitro transformed hepatic cancer cells likely by unleashing expression of key oncogenes previously associated with these cancerous features. Consistent with these data, TTP was significantly down-regulated in high-grade human HCC, a feature further correlating with poor clinical prognosis. Finally, we uncover hepatocyte nuclear factor 4 alpha and early growth response 1, two key transcription factors lost with hepatocyte dedifferentiation, as key regulators of TTP expression. CONCLUSIONS: Although TTP importantly contributes to hepatic inflammation and cancer initiation, its loss with hepatocyte dedifferentiation fosters cancer cells migration and invasion. Loss of TTP may represent a clinically relevant biomarker of high-grade HCC associated with poor prognosis.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Tristetraprolin/metabolism , Animals , Carcinogenesis/genetics , Carcinogenesis/immunology , Carcinogenesis/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Datasets as Topic , Diethylnitrosamine/administration & dosage , Diethylnitrosamine/toxicity , Down-Regulation , Female , Gene Expression Regulation, Neoplastic/immunology , Hepatocytes , Humans , Liver/immunology , Liver/pathology , Liver Cirrhosis/immunology , Liver Cirrhosis/pathology , Liver Neoplasms/immunology , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/chemistry , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/immunology , Liver Neoplasms, Experimental/pathology , Male , Mice , Non-alcoholic Fatty Liver Disease , Primary Cell Culture , Prognosis , RNA-Seq , Survival Analysis , Tristetraprolin/genetics
19.
Mucosal Immunol ; 14(1): 80-91, 2021 01.
Article in English | MEDLINE | ID: mdl-32467605

ABSTRACT

AU-rich element (ARE)-mediated mRNA decay represents a key mechanism to avoid excessive production of inflammatory cytokines. Tristetraprolin (TTP, encoded by Zfp36) is a major ARE-binding protein, since Zfp36-/- mice develop a complex multiorgan inflammatory syndrome that shares many features with spondyloarthritis. The role of TTP in intestinal homeostasis is not known. Herein, we show that Zfp36-/- mice do not develop any histological signs of gut pathology. However, they display a clear increase in intestinal inflammatory markers and discrete alterations in microbiota composition. Importantly, oral antibiotic treatment reduced both local and systemic joint and skin inflammation. We further show that absence of overt intestinal pathology is associated with local expansion of regulatory T cells. We demonstrate that this is related to increased vitamin A metabolism by gut dendritic cells, and identify RALDH2 as a direct target of TTP. In conclusion, these data bring insights into the interplay between microbiota-dependent gut and systemic inflammation during immune-mediated disorders, such as spondyloarthritis.


Subject(s)
Aldehyde Oxidoreductases/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Homeostasis , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tristetraprolin/metabolism , Aldehyde Oxidoreductases/metabolism , Animals , Cytokines/metabolism , Disease Susceptibility , Gene Expression Regulation , Inflammation Mediators/metabolism , Mice , Mice, Knockout , RNA-Binding Proteins/metabolism
20.
Front Immunol ; 11: 2164, 2020.
Article in English | MEDLINE | ID: mdl-32983182

ABSTRACT

Tristetraprolin (TTP) is a mRNA binding protein that binds to adenylate-uridylate-rich elements within the 3' untranslated regions of certain transcripts, such as tumor necrosis factor (Tnf) mRNA, and increases their rate of decay. Modulation of TTP expression is implicated in inflammation; however, its role in acute lung inflammation remains unknown. Accordingly, we tested the role of TTP in lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. LPS-challenged TTP-knockout (TTPKO) mice, as well as myeloid cell-specific TTP-deficient (TTPmyeKO) mice, exhibited significant increases in lung injury, although these responses were more robust in the TTPKO. Mice with systemic overexpression of TTP (TTPΔARE) were protected from ALI, as indicated by significantly reduced neutrophilic infiltration, reduced levels of neutrophil chemoattractants, and histological parameters of ALI. Interestingly, while irradiated wild-type (WT) mice reconstituted with TTPKO hematopoietic progenitor cells (HPCs) showed exaggerated ALI, their reconstitution with the TTPΔARE HPCs mitigated ALI. The reconstitution of irradiated TTPΔARE mice with HPCs from either WT or TTPΔARE donors conferred significant protection against ALI. In contrast, irradiated TTPΔARE mice reconstituted with TTPKO HPCs had exaggerated ALI, but the response was milder as compared to WT recipients that received TTPKO HPCs. Finally, the reconstitution of irradiated TTPKO recipient mice with TTPΔARE HPCs did not confer any protection to the TTPKO mice. These data together suggest that non-HPCs-specific overexpression of TTP within the lungs protects against ALI via downregulation of neutrophil chemoattractants and reduction in neutrophilic infiltration.


Subject(s)
Acute Lung Injury/prevention & control , Alveolar Epithelial Cells/metabolism , Endothelial Cells/metabolism , Fibroblasts/metabolism , Tristetraprolin/physiology , Acute Lung Injury/chemically induced , Animals , Bone Marrow Transplantation , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Chemotaxis, Leukocyte , Cytokines/physiology , Female , Lipopolysaccharides/toxicity , Male , Mice , Mice, Knockout , Neutrophil Infiltration , Neutrophils/immunology , Radiation Chimera , Tristetraprolin/biosynthesis , Tristetraprolin/deficiency , Tristetraprolin/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...