Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(12): 7729-7740, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35670821

ABSTRACT

Tracking Saharan-Sahelian dust across the globe is essential to elucidate its effects on Earth's climate, radiation budget, hydrologic cycle, nutrient cycling, and also human health when it seasonally enters populated/industrialized regions of Africa, Europe, and North America. However, the elemental composition of mineral dust arising locally from construction activities and aeolian soil resuspension overlaps with African dust. Therefore, we derived a novel "isotope-resolved chemical mass balance" (IRCMB) method by employing radiogenic strontium, neodymium, and hafnium isotopes to accurately differentiate and quantitatively apportion collinear proximal and synoptic-scale crustal and anthropogenic mineral dust sources. IRCMB was applied to two air masses that transported African dust to Barbados and Texas to track particulate matter (PM) spikes at both locations. During Saharan-Sahelian intrusions, the radiogenic content of urban PM2.5 increased with respect to 87Sr/86Sr and 176Hf/177Hf but decreased in terms of 143Nd/144Nd, demonstrating the ability of these isotopes to sensitively track African dust intrusions even in complex metropolitan atmospheres. The principal aerosol strontium, neodymium, and hafnium end members were concrete dust and soil, soil and motor vehicles, and motor vehicles and North African dust, respectively. IRCMB separated and quantified local soil and distal crustal dust even when PM2.5 concentrations were low, opening a promising source apportionment avenue for urbanized/industrialized atmospheres.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Atmosphere , Dust/analysis , Environmental Monitoring/methods , Hafnium/analysis , Humans , Isotopes , Minerals , Neodymium/analysis , Particulate Matter/analysis , Soil , Strontium , Texas
2.
Int J Biometeorol ; 52(8): 823-32, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18773225

ABSTRACT

Asthma is epidemic in developed and developing countries including those in the Caribbean where it is widely believed that African dust, transported in high concentrations in the Trade Winds every year, is a major causative factor. The link between asthma and dust in the Caribbean is based largely on anecdotal evidence that associates sharp increases in the occurrence of asthma symptoms with hazy conditions often caused by dust. Here we report on a 2-year study of the relationship between the daily concentrations of dust measured in on-shore Trade Winds at Barbados and pediatric asthma attendance rates at Queen Elizabeth Hospital (QEH). We looked for large increases in QEH daily attendances in relation to daily dust concentrations as previously suggested by anecdotal observations. We could not find any obvious relationship although there may be more subtle linkages between dust and asthma. Our measurements show, however, that the concentration of dust in the size range under 2.5 microm diameter is sufficiently high as to challenge United States Environmental Protection Agency air quality standards for respirable particles. Thus, African dust may constitute a health threat of a different nature, producing symptoms less obvious than those of asthma.


Subject(s)
Air Pollution/statistics & numerical data , Asthma/epidemiology , Dust/analysis , Models, Statistical , Risk Assessment/methods , Seasons , Wind , Africa , Air Pollution/analysis , Atlantic Ocean , Child , Computer Simulation , Environment , Humans , Incidence , Oceans and Seas , Risk Factors , Statistics as Topic , West Indies
SELECTION OF CITATIONS
SEARCH DETAIL
...