Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cardiol ; 363: 138-148, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35753619

ABSTRACT

AIMS: Sodium glucose co-transporter 2 inhibitors (SGLT2i) demonstrate cardioprotective benefits independent of a glucose lowering effect including preservation of cardiac function during a myocardial ischemia. Sodium­hydrogen exchanger-1 (NHE-1), has been hypothesized to contribute to the cardiac effects of SGLT2i. We characterized the beneficial effects of acute pre-ischemia exposure to SGLT2i and explored the possibility that these effects are explained by NHE-1 inhibition. METHODS AND RESULTS: Swine were anesthetized and instrumented for invasive hemodynamic measurements. After baseline data collection, swine received a 15-30 min intravenous infusion of vehicle (DMSO), the SGLT2i canagliflozin (~1 mg/kg), or the NHE-1 inhibitor cariporide (~0.03 mg/kg) ending immediately prior to occlusion of the left circumflex artery. Measurements were obtained at baseline, during a 60-min complete occlusion of the circumflex coronary artery, and during a 2-h reperfusion period. Blood pressure, heart rate, left anterior descending artery flow, and associated myocardial oxygen consumption were unaffected by acute pre-treatment with canagliflozin or cariporide during ischemia and reperfusion. Acute pre-ischemic treatment with canagliflozin significantly increased diastolic filling and stroke work, producing a rightward shift in the Frank-Starling relationship, and also improved cardiac work efficiency relative to untreated control hearts during ischemia. Effects of NHE-1 inhibition with cariporide were modest and dissimilar. Examination of AP-1 cells transfected with wild-type NHE-1 and iPSC-derived cardiomyocytes confirmed dose-dependent-inhibition of NHE-1 activity by cariporide, while canagliflozin had no significant effect on NHE-1 activity. CONCLUSION: Acute pre-treatment with SGLT2i produces cardioprotective effects during ischemia, including improved work efficiency. These effects are not explained by NHE-1 inhibition. TRANSLATIONAL PERSPECTIVE: SGLT2 inhibitors have been shown to improve cardiac outcomes in patient including reducing myocardial infarction incidence and mortality. The mechanism(s) explaining this effect are not clear. This manuscript demonstrates a protective effect from acute SGLT2i exposure, as short as 15 min, prior to experimental infarction in swine. These effects were independent of NHE1 inhibition. These observations suggest that SGLT2 inhibitors can confer cardioprotective effects on a very short time scale. It is possible that such effects provide an ongoing contribution to ischemic protection even in the setting of chronic treatment.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Sodium-Glucose Transporter 2 Inhibitors , Animals , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Glucose , Myocardial Ischemia/drug therapy , Myocytes, Cardiac , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Hydrogen Exchangers/pharmacology , Swine
2.
Basic Res Cardiol ; 116(1): 35, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34018061

ABSTRACT

Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity, yet underlying mechanisms and potential therapeutic strategies remain poorly understood. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Whether MR blockade improves in vivo regulation of coronary flow, a process involving voltage-dependent K+ (Kv) channel activation, or reduces coronary structural remodeling in obesity is unclear. Thus, the goals of this investigation were to determine the effects of obesity on coronary responsiveness to reductions in arterial PO2 and potential involvement of Kv channels and whether the benefit of MR blockade involves improved coronary Kv function or altered passive structural properties of the coronary microcirculation. Hypoxemia increased coronary blood flow similarly in lean and obese swine; however, baseline coronary vascular resistance was significantly higher in obese swine. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. Chronic MR inhibition in obese swine normalized baseline coronary resistance, did not influence hypoxemic coronary vasodilation, and did not restore coronary Kv function (assessed in vivo, ex vivo, and via patch clamping). Lastly, MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening.


Subject(s)
Aldosterone/pharmacology , Coronary Artery Disease/prevention & control , Coronary Circulation/drug effects , Coronary Vessels/drug effects , Mineralocorticoid Receptor Antagonists/pharmacology , Obesity/drug therapy , Potassium Channels, Voltage-Gated/metabolism , Vascular Resistance/drug effects , Animals , Arterioles/drug effects , Arterioles/metabolism , Arterioles/physiopathology , Coronary Artery Disease/etiology , Coronary Artery Disease/metabolism , Coronary Artery Disease/physiopathology , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Disease Models, Animal , Female , Male , Microcirculation/drug effects , Obesity/complications , Obesity/metabolism , Obesity/physiopathology , Sus scrofa , Vascular Stiffness/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...