Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Genet ; 52(12): 1364-1372, 2020 12.
Article in English | MEDLINE | ID: mdl-33230297

ABSTRACT

Inappropriate stimulation or defective negative regulation of the type I interferon response can lead to autoinflammation. In genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, we identified biallelic mutations in LSM11 and RNU7-1, which encode components of the replication-dependent histone pre-mRNA-processing complex. Mutations were associated with the misprocessing of canonical histone transcripts and a disturbance of linker histone stoichiometry. Additionally, we observed an altered distribution of nuclear cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and enhanced interferon signaling mediated by the cGAS-stimulator of interferon genes (STING) pathway in patient-derived fibroblasts. Finally, we established that chromatin without linker histone stimulates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) production in vitro more efficiently. We conclude that nuclear histones, as key constituents of chromatin, are essential in suppressing the immunogenicity of self-DNA.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Interferon Type I/biosynthesis , RNA Precursors/metabolism , RNA-Binding Proteins/genetics , Ribonucleoprotein, U7 Small Nuclear/genetics , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/immunology , Cell Line , DNA/immunology , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , HCT116 Cells , HEK293 Cells , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/immunology , Humans , Membrane Proteins/metabolism , Nervous System Malformations/genetics , Nervous System Malformations/immunology , Nucleotides, Cyclic/biosynthesis , Nucleotidyltransferases/metabolism
2.
Immunity ; 50(3): 645-654.e6, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30770250

ABSTRACT

The epidermal growth factor receptor ligand Amphiregulin has a well-documented role in the restoration of tissue homeostasis after injury; however, the mechanism by which Amphiregulin contributes to wound repair remains unknown. Here we show that Amphiregulin functioned by releasing bioactive transforming growth factor beta (TGF-ß) from latent complexes via integrin-αV activation. Using acute injury models in two different tissues, we found that by inducing TGF-ß activation on mesenchymal stromal cells (pericytes), Amphiregulin induced their differentiation into myofibroblasts, thereby selectively contributing to the restoration of vascular barrier function within injured tissue. Furthermore, we identified macrophages as a critical source of Amphiregulin, revealing a direct effector mechanism by which these cells contribute to tissue restoration after acute injury. Combined, these observations expose a so far under-appreciated mechanism of how cells of the immune system selectively control the differentiation of tissue progenitor cells during tissue repair and inflammation.


Subject(s)
Amphiregulin/metabolism , Macrophages/metabolism , Pericytes/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation/physiology , Female , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Myofibroblasts/metabolism
3.
Immunity ; 47(4): 710-722.e6, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29045902

ABSTRACT

Gastro-intestinal helminth infections trigger the release of interleukin-33 (IL-33), which induces type-2 helper T cells (Th2 cells) at the site of infection to produce IL-13, thereby contributing to host resistance in a T cell receptor (TCR)-independent manner. Here, we show that, as a prerequisite for IL-33-induced IL-13 secretion, Th2 cells required the expression of the epidermal growth factor receptor (EGFR) and of its ligand, amphiregulin, for the formation of a signaling complex between T1/ST2 (the IL-33R) and EGFR. This shared signaling complex allowed IL-33 to induce the EGFR-mediated activation of the MAP-kinase signaling pathway and consequently the expression of IL-13. Lack of EGFR expression on T cells abrogated IL-13 expression in infected tissues and impaired host resistance. EGFR expression on Th2 cells was TCR-signaling dependent, and therefore, our data reveal a mechanism by which antigen presentation controls the innate effector function of Th2 cells at the site of inflammation.


Subject(s)
ErbB Receptors/immunology , Interleukin-13/immunology , Interleukin-33/immunology , Receptors, Antigen, T-Cell/immunology , Th2 Cells/immunology , Amphiregulin/immunology , Amphiregulin/metabolism , Animals , Cell Line , Cells, Cultured , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression/genetics , Gene Expression/immunology , Gene Expression Profiling/methods , HEK293 Cells , Humans , Interleukin-13/genetics , Interleukin-13/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , MAP Kinase Signaling System/immunology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nematospiroides dubius/immunology , Nematospiroides dubius/physiology , Nocardia/immunology , Nocardia/physiology , Nocardia Infections/immunology , Nocardia Infections/metabolism , Nocardia Infections/microbiology , Receptors, Antigen, T-Cell/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Strongylida Infections/immunology , Strongylida Infections/metabolism , Strongylida Infections/parasitology , Th2 Cells/metabolism
4.
Cell Rep ; 14(12): 2819-32, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26997270

ABSTRACT

Thymic epithelial cells (TECs) are critically required for T cell development, but the cellular mechanisms that maintain adult TECs are poorly understood. Here, we show that a previously unidentified subpopulation, EpCam(+)UEA1(-)Ly-51(+)PLET1(+)MHC class II(hi), which comprises <0.5% of adult TECs, contains bipotent TEC progenitors that can efficiently generate both cortical (c) TECs and medullary (m) TECs. No other adult TEC population tested in this study contains this activity. We demonstrate persistence of PLET1(+)Ly-51(+) TEC-derived cells for 9 months in vivo, suggesting the presence of thymic epithelial stem cells. Additionally, we identify cTEC-restricted short-term progenitor activity but fail to detect high efficiency mTEC-restricted progenitors in the adult thymus. Our data provide a phenotypically defined adult thymic epithelial progenitor/stem cell that is able to generate both cTECs and mTECs, opening avenues for improving thymus function in patients.


Subject(s)
Stem Cells/metabolism , Thymus Gland/cytology , Animals , Female , Flow Cytometry , Humans , Immunohistochemistry , Immunophenotyping , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Phenotype , Pregnancy Proteins/metabolism , Real-Time Polymerase Chain Reaction , Stem Cells/cytology , Transcriptome
5.
PLoS Pathog ; 11(3): e1004676, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25816012

ABSTRACT

Over 25% of the world's population are infected with helminth parasites, the majority of which colonise the gastrointestinal tract. However, no vaccine is yet available for human use, and mechanisms of protective immunity remain unclear. In the mouse model of Heligmosomoides polygyrus infection, vaccination with excretory-secretory (HES) antigens from adult parasites elicits sterilising immunity. Notably, three purified HES antigens (VAL-1, -2 and -3) are sufficient for effective vaccination. Protection is fully dependent upon specific IgG1 antibodies, but passive transfer confers only partial immunity to infection, indicating that cellular components are also required. Moreover, immune mice show greater cellular infiltration associated with trapping of larvae in the gut wall prior to their maturation. Intra-vital imaging of infected intestinal tissue revealed a four-fold increase in extravasation by LysM+GFP+ myeloid cells in vaccinated mice, and the massing of these cells around immature larvae. Mice deficient in FcRγ chain or C3 complement component remain fully immune, suggesting that in the presence of antibodies that directly neutralise parasite molecules, the myeloid compartment may attack larvae more quickly and effectively. Immunity to challenge infection was compromised in IL-4Rα- and IL-25-deficient mice, despite levels of specific antibody comparable to immune wild-type controls, while deficiencies in basophils, eosinophils or mast cells or CCR2-dependent inflammatory monocytes did not diminish immunity. Finally, we identify a suite of previously uncharacterised heat-labile vaccine antigens with homologs in human and veterinary parasites that together promote full immunity. Taken together, these data indicate that vaccine-induced immunity to intestinal helminths involves IgG1 antibodies directed against secreted proteins acting in concert with IL-25-dependent Type 2 myeloid effector populations.


Subject(s)
Antibodies, Helminth/immunology , Antigens, Helminth/immunology , Immunoglobulin G/immunology , Interleukin-4/immunology , Interleukins/immunology , Nematospiroides dubius/immunology , Strongylida Infections/immunology , Vaccination , Animals , Antibodies, Helminth/genetics , Humans , Immunoglobulin G/genetics , Interleukin-4/genetics , Interleukins/genetics , Larva/immunology , Mice , Mice, Knockout , Strongylida Infections/genetics , Strongylida Infections/prevention & control
6.
Exp Parasitol ; 158: 8-17, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25728231

ABSTRACT

The murine intestinal nematode Heligmosomoides polygyrus exerts multiple immunomodulatory effects in the host, including the suppression of allergic inflammation in mice sensitized to allergen presented with alum adjuvant. Similar suppression is attained by co-administration of H. polygyrus excretory/secretory products (HES) with the sensitizing dose of ovalbumin (OVA) in alum. We investigated the mechanism of suppression by HES in this model, and found it was maintained in MyD88xTRIF-deficient mice, implying no role for helminth- or host-derived TLR ligands, or IL-1 family cytokines that signal in a MyD88- or TRIF-dependent manner. We also found suppression was unchanged in µMT mice, which lack B2 B cells, and that suppression was not abrogated when regulatory T cells were depleted in Foxp3.LuciDTR-4 mice. However, reduced IL-5 production was seen in the first 12 h after injection of OVA-alum when HES was co-administered, associated with reduced activation of IL-5(+) and IL-13(+) group 2 innate lymphoid cells. Thus, the suppressive effects of HES on alum-mediated OVA sensitization are reflected in the very earliest innate response to allergen exposure in vivo.


Subject(s)
Hypersensitivity/immunology , Lymphocytes/immunology , Nematospiroides dubius/immunology , Adaptor Proteins, Vesicular Transport/deficiency , Adaptor Proteins, Vesicular Transport/immunology , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Animals , B-Lymphocytes, Regulatory/immunology , Immunologic Deficiency Syndromes/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/administration & dosage , Primary Immunodeficiency Diseases , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology
7.
Open Virol J ; 7: 28-36, 2013.
Article in English | MEDLINE | ID: mdl-23493233

ABSTRACT

A potential target for the development of universal vaccine strategies against Influenza A is the M2 protein - a membrane protein with a highly conserved extracellular domain. In this study we developed engineered T-cell receptors, by fusing M2-specific antibody sequences with T-cell receptor transmembrane and signaling domains to target influenza infected cells. When expressed on T-cells, these novel T-cell receptors (chimeric antigen receptors - CARs) are able to recognize specific antigens on the surface of target cells via an MHC-independent mechanism. Using an existing monoclonal antibody (14C2) specific for the M2 ectodomain (M2e), we generated an M2-specific CAR. We tested the specificity of this M2 CAR in vitro by measuring the activation of T-cells in response to M2-specific peptides or M2-expressing cell lines. Both Jurkat T-cells and peripheral blood mononuclear cells expressing the M2-specific CAR responded to specific antigen stimulation by upregulating NFAT and producing γ-interferon. To test whether the M2-specific CAR are effective at recognizing influenza infected cells in vivo we used an established BALB/c murine infection model. At day 4 post-infection, when M2 CAR expressing splenocytes could be detected in the lung, the Influenza A/WSN/33 virus titre was around 50% of that in control mice. Although the lung virus titre later increased in the treated group, virus was cleared in both groups of mice by day 8. The results provide support for the development of M2e as a target for cell mediated immunotherapy.

8.
Eur J Immunol ; 42(10): 2667-82, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22706967

ABSTRACT

Allergic asthma is less prevalent in countries with parasitic helminth infections, and mice infected with parasites such as Heligmosomoides polygyrus are protected from allergic airway inflammation. To establish whether suppression of allergy could be mediated by soluble products of this helminth, we tested H. polygyrus excretory-secretory (HES) material for its ability to impair allergic inflammation. When HES was added to sensitising doses of ovalbumin, the subsequent allergic airway response was suppressed, with ablated cell infiltration, a lower ratio of effector (CD4(+) CD25(+) Foxp3(-) ) to regulatory (CD4(+) Foxp3(+) ) T (Treg) cells, and reduced Th1, Th2 and Th17 cytokine production. HES exposure reduced IL-5 responses and eosinophilia, abolished IgE production and inhibited the type 2 innate molecules arginase-1 and RELM-α (resistin-like molecule-α). Although HES contains a TGF-ß-like activity, similar effects in modulating allergy were not observed when administering mammalian TGF-ß alone. HES also protected previously sensitised mice, suppressing recruitment of eosinophils to the airways when given at challenge, but no change in Th or Treg cell populations was apparent. Because heat-treatment of HES did not impair suppression at sensitisation, but compromised its ability to suppress at challenge, we propose that HES contains distinct heat-stable and heat-labile immunomodulatory molecules, which modulate pro-allergic adaptive and innate cell populations.


Subject(s)
Antigens, Helminth/administration & dosage , Asthma/immunology , Cytokines/metabolism , Eosinophils/immunology , Nematospiroides dubius/immunology , Strongylida Infections/immunology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Therapy with Helminths , Animals , Arginase/metabolism , Asthma/therapy , Cell Movement/drug effects , Cells, Cultured , Eosinophils/drug effects , Humans , Immunoglobulin E/blood , Immunosuppression Therapy , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred BALB C , T-Lymphocytes, Regulatory/drug effects , Th2 Cells/drug effects
9.
Proc Natl Acad Sci U S A ; 105(3): 961-6, 2008 Jan 22.
Article in English | MEDLINE | ID: mdl-18195351

ABSTRACT

The thymus is essential for a functional immune system, because the thymic stroma uniquely supports T lymphocyte development. We have previously identified the epithelial progenitor population from which the thymus arises and demonstrated its ability to generate an organized functional thymus upon transplantation. These thymic epithelial progenitor cells (TEPC) are defined by surface determinants recognized by the mAbs MTS20 and MTS24, which were also recently shown to identify keratinocyte progenitor cells in the skin. However, the biochemical nature of the MTS20 and MTS24 determinants has remained unknown. Here we show, via expression profiling of fetal mouse TEPC and their differentiated progeny and subsequent analyses, that both MTS20 and MTS24 specifically bind an orphan protein of unknown function, Placenta-expressed transcript (Plet)-1. In the postgastrulation embryo, Plet-1 expression is highly restricted to the developing pharyngeal endoderm and mesonephros until day 11.5 of embryogenesis, consistent with the MTS20 and MTS24 staining pattern; both MTS20 and MTS24 specifically bind cell lines transfected with Plet-1; and antibodies to Plet-1 recapitulate MTS20/24 staining. In adult tissues, we demonstrate expression in a number of sites, including mammary and prostate epithelia and in the pancreas, where Plet-1 is specifically expressed by the major duct epithelium, providing a specific cell surface marker for this putative reservoir of pancreatic progenitor/stem cells. Plet-1 will thus provide an invaluable tool for genetic analysis of the lineage relationships and molecular mechanisms operating in the development, homeostasis, and injury in several organ/tissue systems.


Subject(s)
Epithelial Cells/metabolism , Pregnancy Proteins/metabolism , Stem Cells/immunology , Stem Cells/metabolism , Thymus Gland/embryology , Thymus Gland/metabolism , Animals , Antigens, Surface/genetics , Antigens, Surface/immunology , Biomarkers , Cell Line , Embryo, Mammalian/embryology , Embryo, Mammalian/immunology , Embryo, Mammalian/metabolism , Epithelial Cells/immunology , Epithelium/metabolism , Gene Expression Regulation , Gene Expression Regulation, Developmental , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Pancreatic Ducts/metabolism , Pregnancy Proteins/genetics , Pregnancy Proteins/immunology , RNA, Messenger/genetics , Thymus Gland/immunology , Time Factors
10.
Biochem Biophys Res Commun ; 356(2): 334-40, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17362876

ABSTRACT

Epithelial V-like antigen (EVA) is an immunoglobulin-like adhesion molecule identified in a screen for molecules developmentally regulated at the DN to DP progression in thymocyte development. We show that EVA is expressed during the early stages of thymus organogenesis in both fetal thymic epithelia and T cell precursors, and is progressively downregulated from day 16.5 of embryonic development. In the postnatal thymus, EVA expression is restricted to epithelial cells and is distributed throughout both cortical and medullary thymic regions. Transgenic overexpression of EVA in the thymus cortex resulted in a modified stromal environment, which elicited an increase in organ size and absolute cell number. Although peripheral T lymphocyte numbers are augmented throughout life, no imbalance either in the repertoire, or in the different T cell subsets was detected. Collectively, these data suggest a role for EVA in structural organisation of the thymus and early lymphocyte development.


Subject(s)
Cell Adhesion Molecules/physiology , Gene Expression Regulation, Developmental/physiology , Thymus Gland/growth & development , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , T-Lymphocyte Subsets/physiology , Thymus Gland/cytology , Thymus Gland/metabolism
11.
Nat Immunol ; 5(5): 546-53, 2004 May.
Article in English | MEDLINE | ID: mdl-15098031

ABSTRACT

T cell development depends critically on several distinct thymic epithelial cell types that are organized into two main compartments: cortex and medulla. The prevailing hypothesis suggests that these derive from ectoderm and endoderm, respectively. Here we show that lineage analysis provides no evidence for an ectodermal contribution to the thymic rudiment. We further demonstrate, via ectopic transplantation, that isolated pharyngeal endoderm can generate a functional thymus containing organized cortical and medullary regions and that this capacity is not potentiated by the presence of pharyngeal ectoderm. These data establish that the cortical and medullary thymic epithelial compartments derive from a single germ layer, the endoderm, thus refuting the 'dual-origin' model of thymic epithelial ontogeny.


Subject(s)
Ectoderm/metabolism , Endoderm/metabolism , Pharynx/embryology , Thymus Gland/embryology , Animals , Epithelium/embryology , Epithelium/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Pharynx/metabolism , Thymus Gland/metabolism
12.
Immunity ; 16(6): 803-14, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12121662

ABSTRACT

T cell differentiation and repertoire selection depend critically on several distinct thymic epithelial cell types, whose lineage relationships are unclear. We have investigated these relationships via functional analysis of the epithelial populations within the thymic primordium. Here, we show that mAbs MTS20 and MTS24 identify a population of cells that, when purified and grafted ectopically, can differentiate into all known thymic epithelial cell types, attract lymphoid progenitors, and support CD4(+) and CD8(+) T cell development in nude mice. In contrast, other epithelial populations in the thymic primordium can fulfill none of these functions. These data establish that the MTS20(+)24(+) population is sufficient to generate a functional thymus in vivo and thus argue strongly that all thymic epithelial cell types derive from a common progenitor cell.


Subject(s)
Stem Cells/cytology , T-Lymphocytes/cytology , Thymus Gland/cytology , Animals , Antibodies, Monoclonal , Biomarkers , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation , Epithelial Cells/cytology , Female , Flow Cytometry , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Nude , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...