Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 14(12): 1673-1681, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116446

ABSTRACT

SHP2 has emerged as an important target for oncology small-molecule drug discovery. As a nonreceptor tyrosine phosphatase within the MAPK pathway, it has been shown to control cell growth, differentiation, and oncogenic transformation. We used structure-based design to find a novel class of potent and orally bioavailable SHP2 inhibitors. Our efforts led to the discovery of the 5-azaquinoxaline as a new core for developing this class of compounds. Optimization of the potency and properties of this scaffold generated compound 30, that exhibited potent in vitro SHP2 inhibition and showed excellent in vivo efficacy and pharmacokinetic profile.

2.
J Med Chem ; 65(4): 3123-3133, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34889605

ABSTRACT

KRASG12D, the most common oncogenic KRAS mutation, is a promising target for the treatment of solid tumors. However, when compared to KRASG12C, selective inhibition of KRASG12D presents a significant challenge due to the requirement of inhibitors to bind KRASG12D with high enough affinity to obviate the need for covalent interactions with the mutant KRAS protein. Here, we report the discovery and characterization of the first noncovalent, potent, and selective KRASG12D inhibitor, MRTX1133, which was discovered through an extensive structure-based activity improvement and shown to be efficacious in a KRASG12D mutant xenograft mouse tumor model.


Subject(s)
Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Drug Discovery , Humans , Mice , Models, Molecular , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
J Med Chem ; 63(13): 6679-6693, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32250617

ABSTRACT

Capping off an era marred by drug development failures and punctuated by waning interest and presumed intractability toward direct targeting of KRAS, new technologies and strategies are aiding in the target's resurgence. As previously reported, the tetrahydropyridopyrimidines were identified as irreversible covalent inhibitors of KRASG12C that bind in the switch-II pocket of KRAS and make a covalent bond to cysteine 12. Using structure-based drug design in conjunction with a focused in vitro absorption, distribution, metabolism and excretion screening approach, analogues were synthesized to increase the potency and reduce metabolic liabilities of this series. The discovery of the clinical development candidate MRTX849 as a potent, selective covalent inhibitor of KRASG12C is described.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Mice , Models, Molecular , Mutation , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Xenograft Model Antitumor Assays
4.
J Thorac Oncol ; 15(4): 541-549, 2020 04.
Article in English | MEDLINE | ID: mdl-31988000

ABSTRACT

INTRODUCTION: Novel rearranged in transfection (RET)-specific tyrosine kinase inhibitors (TKIs) such as selpercatinib (LOXO-292) have shown unprecedented efficacy in tumors positive for RET fusions or mutations, notably RET fusion-positive NSCLC and RET-mutated medullary thyroid cancer (MTC). However, the mechanisms of resistance to these agents have not yet been described. METHODS: Analysis was performed of circulating tumor DNA and tissue in patients with RET fusion-positive NSCLC and RET-mutation positive MTC who developed disease progression after an initial response to selpercatinib. Acquired resistance was modeled preclinically using a CCDC6-RET fusion-positive NSCLC patient-derived xenograft. The inhibitory activity of anti-RET multikinase inhibitors and selective RET TKIs was evaluated in enzyme and cell-based assays. RESULTS: After a dramatic initial response to selpercatinib in a patient with KIF5B-RET NSCLC, analysis of circulating tumor DNA revealed emergence of RET G810R, G810S, and G810C mutations in the RET solvent front before the emergence of clinical resistance. Postmortem biopsy studies reported intratumor and intertumor heterogeneity with distinct disease subclones containing G810S, G810R, and G810C mutations in multiple disease sites indicative of convergent evolution on the G810 residue resulting in a common mechanism of resistance. Acquired mutations in RET G810 were identified in tumor tissue from a second patient with CCDC6-RET fusion-positive NSCLC and in plasma from patients with additional RET fusion-positive NSCLC and RET-mutant MTC progressing on an ongoing phase 1 and 2 trial of selpercatinib. Preclinical studies reported the presence of RET G810R mutations in a CCDC6-RET patient-derived xenograft (from a patient with NSCLC) model of acquired resistance to selpercatinib. Structural modeling predicted that these mutations sterically hinder the binding of selpercatinib, and in vitro assays confirmed loss of activity for both anti-RET multikinase inhibitors and selective RET TKIs. CONCLUSIONS: RET G810 solvent front mutations represent the first described recurrent mechanism of resistance to selective RET inhibition with selpercatinib. Development of potent inhibitor of these mutations and maintaining activity against RET gatekeeper mutations could be an effective strategy to target resistance to selective RET inhibitors.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins c-ret , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-ret/genetics , Pyrazoles , Pyridines , Solvents , Transfection
6.
Pharm Res ; 35(4): 89, 2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29520505

ABSTRACT

PURPOSE: Polymeric drugs, including patiromer (Veltassa®), bind target molecules or ions in the gut, allowing fecal elimination. Non-absorbed insoluble polymers, like patiromer, avoid common systemic drug-drug interactions (DDIs). However, the potential for DDI via polymer binding to orally administered drugs during transit of the gastrointestinal tract remains. Here we elucidate the properties correlated with drug-patiromer binding using quantitative structure-property relationship (QSPR) models. METHODS: We selected 28 drugs to evaluate for binding to patiromer in vitro over a range of pH and ionic conditions intended to mimic the gut environment. Using this in vitro data, we developed QSPR models using step-wise linear regression and analyzed over 100 physiochemical drug descriptors. RESULTS: Four descriptors emerged that account for ~70% of patiromer-drug binding in vitro: the computed surface area of hydrogen bond accepting atoms, ionization potential, electron affinity, and lipophilicity (R 2 = 0.7, Q 2 = 0.6). Further, certain molecular properties are shared by nonbinding, weak, or strong binding compounds. CONCLUSIONS: These findings offer insight into drivers of in vitro binding to patiromer and describe a useful approach for assessing potential drug-binding risk of investigational polymeric drugs.


Subject(s)
Models, Biological , Pharmaceutical Research/methods , Polymers/pharmacology , Quantitative Structure-Activity Relationship , Administration, Oral , Computer Simulation , Drug Interactions , Gastrointestinal Transit , Hydrophobic and Hydrophilic Interactions , Linear Models , Molecular Structure , Polymers/chemistry
7.
ACS Med Chem Lett ; 9(12): 1230-1234, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613331

ABSTRACT

KRAS is the most frequently mutated driver oncogene in human cancer, and KRAS mutations are commonly associated with poor prognosis and resistance to standard treatment. The ability to effectively target and block the function of mutated KRAS has remained elusive despite decades of research. Recent findings have demonstrated that directly targeting KRAS-G12C with electrophilic small molecules that covalently modify the mutated codon 12 cysteine is feasible. We have discovered a series of tetrahydropyridopyrimidines as irreversible covalent inhibitors of KRAS-G12C with in vivo activity. The PK/PD and efficacy of compound 13 will be highlighted.

8.
Cancer Discov ; 7(9): 963-972, 2017 09.
Article in English | MEDLINE | ID: mdl-28578312

ABSTRACT

Larotrectinib, a selective TRK tyrosine kinase inhibitor (TKI), has demonstrated histology-agnostic efficacy in patients with TRK fusion-positive cancers. Although responses to TRK inhibition can be dramatic and durable, duration of response may eventually be limited by acquired resistance. LOXO-195 is a selective TRK TKI designed to overcome acquired resistance mediated by recurrent kinase domain (solvent front and xDFG) mutations identified in multiple patients who have developed resistance to TRK TKIs. Activity against these acquired mutations was confirmed in enzyme and cell-based assays and in vivo tumor models. As clinical proof of concept, the first 2 patients with TRK fusion-positive cancers who developed acquired resistance mutations on larotrectinib were treated with LOXO-195 on a first-in-human basis, utilizing rapid dose titration guided by pharmacokinetic assessments. This approach led to rapid tumor responses and extended the overall duration of disease control achieved with TRK inhibition in both patients.Significance: LOXO-195 abrogated resistance in TRK fusion-positive cancers that acquired kinase domain mutations, a shared liability with all existing TRK TKIs. This establishes a role for sequential treatment by demonstrating continued TRK dependence and validates a paradigm for the accelerated development of next-generation inhibitors against validated oncogenic targets. Cancer Discov; 7(9); 963-72. ©2017 AACR.See related commentary by Parikh and Corcoran, p. 934This article is highlighted in the In This Issue feature, p. 920.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptor, trkA/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms/genetics , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Receptor, trkA/genetics , Receptor, trkA/metabolism
9.
J Med Chem ; 59(12): 5650-60, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27227380

ABSTRACT

The extracellular signal-regulated kinases ERK1/2 represent an essential node within the RAS/RAF/MEK/ERK signaling cascade that is commonly activated by oncogenic mutations in BRAF or RAS or by upstream oncogenic signaling. While targeting upstream nodes with RAF and MEK inhibitors has proven effective clinically, resistance frequently develops through reactivation of the pathway. Simultaneous targeting of multiple nodes in the pathway, such as MEK and ERK, offers the prospect of enhanced efficacy as well as reduced potential for acquired resistance. Described herein is the discovery and characterization of GDC-0994 (22), an orally bioavailable small molecule inhibitor selective for ERK kinase activity.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyridones/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridones/chemical synthesis , Pyridones/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
10.
J Med Chem ; 58(4): 1976-91, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25603482
11.
Bioorg Med Chem Lett ; 24(12): 2635-9, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24813737

ABSTRACT

The discovery and optimization of a series of tetrahydropyridopyrimidine based extracellular signal-regulated kinase (Erks) inhibitors discovered via HTS and structure based drug design is reported. The compounds demonstrate potent and selective inhibition of Erk2 and knockdown of phospho-RSK levels in HepG2 cells and tumor xenografts.


Subject(s)
Drug Discovery , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Pyridines/chemical synthesis , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Cell Line, Tumor , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Enzyme Activation/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyridines/chemistry , Pyrimidines/chemistry , Small Molecule Libraries , Structure-Activity Relationship
12.
J Med Chem ; 55(18): 8110-27, 2012 Sep 27.
Article in English | MEDLINE | ID: mdl-22934575

ABSTRACT

The discovery and optimization of a series of 6,7-dihydro-5H-cyclopenta[d]pyrimidine compounds that are ATP-competitive, selective inhibitors of protein kinase B/Akt is reported. The initial design and optimization was guided by the use of X-ray structures of inhibitors in complex with Akt1 and the closely related protein kinase A. The resulting compounds demonstrate potent inhibition of all three Akt isoforms in biochemical assays and poor inhibition of other members of the cAMP-dependent protein kinase/protein kinase G/protein kinase C extended family and block the phosphorylation of multiple downstream targets of Akt in human cancer cell lines. Biological studies with one such compound, 28 (GDC-0068), demonstrate good oral exposure resulting in dose-dependent pharmacodynamic effects on downstream biomarkers and a robust antitumor response in xenograft models in which the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway is activated. 28 is currently being evaluated in human clinical trials for the treatment of cancer.


Subject(s)
Adenosine Triphosphate/metabolism , Binding, Competitive , Drug Discovery , Piperazines/metabolism , Piperazines/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/metabolism , Pyrimidines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Humans , Inhibitory Concentration 50 , Models, Molecular , Piperazines/chemistry , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/chemistry , Pyrimidines/chemistry , Substrate Specificity
13.
Oncol Res ; 19(7): 349-63, 2011.
Article in English | MEDLINE | ID: mdl-21936404

ABSTRACT

Chk1 is a serine/threonine kinase that plays several important roles in the cellular response to genotoxic stress. Since many current standard-of-care therapies for human cancer directly damage DNA or inhibit DNA synthesis, there is interest in using small molecule inhibitors of Chk1 to potentiate their clinical activity. Additionally, Chk1 is known to be critically involved in cell cycle progression of unperturbed cells. Therefore, it is plausible that treatment with a Chkl inhibitor alone could also be an efficacious cancer therapy. Here we report that Chk1-A, a potent and highly selective small molecule inhibitor of Chk1, is antiproliferative as a single agent in a variety of human cancer cell lines in vitro. The inhibition of proliferation is associated with collapse of DNA replication and apoptosis. Rapid decreases in inhibitory phosphorylation of CDKs and a concomitant increase in CDK kinase activity and chromatin loading of Cdc45 suggest that the antiproliferative and proapoptotic activity of Chk1-A is at least in part due to deregulation of DNA synthesis. We extend these in vitro studies by demonstrating that Chk1-A inhibits the growth of tumor xenografts in vivo in a treatment regimen that is well tolerated. Together, these results suggest that single-agent inhibition of Chk1 may be an effective treatment strategy for selected human malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/physiology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Checkpoint Kinase 1 , Female , Humans , Mice , Xenograft Model Antitumor Assays
15.
Bioorg Med Chem Lett ; 21(8): 2410-4, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21392984

ABSTRACT

A novel series of spirochromane pan-Akt inhibitors is reported. SAR optimization furnished compounds with improved enzyme potencies and excellent selectivity over the related AGC kinase PKA. Attempted replacement of the phenol hinge binder provided compounds with excellent Akt enzyme and cell activities but greatly diminished selectivity over PKA.


Subject(s)
Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 20(23): 7037-41, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20971641

ABSTRACT

Herein we report the discovery and synthesis of a novel series of dihydrothieno- and dihydrofuropyrimidines (2 and 3) as potent pan Akt inhibitors. Utilizing previous SAR and analysis of the amino acid sequences in the binding site we have designed inhibitors displaying increased PKA and general kinase selectivity with improved tolerability compared to the progenitor pyrrolopyrimidine (1). A representative dihydrothieno compound (34) was advanced into a PC3-NCI prostate mouse tumor model in which it demonstrated a dose-dependent reduction in tumor growth and stasis when dosed orally daily at 200 mg/kg.


Subject(s)
Prostatic Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/chemistry , Animals , Binding Sites , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Mice , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Structure-Activity Relationship , Tumor Burden/drug effects
17.
Bioorg Med Chem Lett ; 20(19): 5607-12, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20810279
18.
Bioorg Med Chem Lett ; 19(19): 5648-51, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19700319

ABSTRACT

Benzothiazine-substituted tetramic acids were discovered as highly potent non-nucleoside inhibitors of HCV NS5B polymerase. X-ray crystallography studies confirmed the binding mode of these inhibitors with HCV NS5B polymerase. Rational optimization of time dependent inactivation of CYP 3A4 and clearance was accomplished by incorporation of electron-withdrawing groups to the benzothiazine core.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/drug effects , Pyrrolidinones/chemistry , Thiazines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Binding Sites , Crystallography, X-Ray , Pyrrolidinones/chemical synthesis , Pyrrolidinones/pharmacokinetics , Rats , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
19.
Bioorg Med Chem Lett ; 19(19): 5652-6, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19709881

ABSTRACT

A series of benzo[d]isothiazole-1,1-dioxides were designed and evaluated as inhibitors of HCV polymerase NS5B. Structure-based design led to the incorporation of a high affinity methyl sulfonamide group. Structure-activity relationship (SAR) studies of this series revealed analogues with submicromolar potencies in the HCV replicon assay and moderate pharmacokinetic properties. SAR studies combined with structure based drug design focused on the sulfonamide region led to a novel and potent cyclic analogue.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/drug effects , Thiazoles/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Binding Sites , Crystallography, X-Ray , Haplorhini , Rats , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/pharmacokinetics , Viral Nonstructural Proteins/metabolism
20.
Bioorg Med Chem Lett ; 19(13): 3642-6, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19457662

ABSTRACT

A new series of benzothiazine-substituted quinolinediones were evaluated as inhibitors of HCV polymerase NS5B. SAR studies on this series revealed a methyl sulfonamide group as a high affinity feature. Analogues with this group showed submicromolar potencies in the HCV cell based replicon assay. Pharmacokinetic and toxicology studies were also performed on a selected compound (34) to evaluate in vivo properties of this new class of inhibitors of HCV NS5B polymerase.


Subject(s)
Antiviral Agents/chemistry , DNA-Directed RNA Polymerases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Hepacivirus/drug effects , Quinolines/chemistry , Quinolones/chemistry , Thiazines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Computer Simulation , Crystallography, X-Ray , DNA-Directed RNA Polymerases/metabolism , Dogs , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Humans , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Quinolones/chemical synthesis , Quinolones/pharmacology , Rats , Structure-Activity Relationship , Thiazines/chemical synthesis , Thiazines/pharmacology , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...