Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 219(2): 305-314, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30535155

ABSTRACT

Background: Identification of bacteria in human vaginal specimens is commonly performed using 16S ribosomal RNA (rRNA) gene sequences. However, studies utilize different 16S primer sets, sequence databases, and parameters for sample and database clustering. Our goal was to assess the ability of these methods to detect common species of vaginal bacteria. Methods: We performed an in silico analysis of 16S rRNA gene primer sets, targeting different hypervariable regions. Using vaginal samples from women with bacterial vaginosis, we sequenced 16S genes using the V1-V3, V3-V4, and V4 primer sets. For analysis, we used an extended Greengenes database including 16S gene sequences from vaginal bacteria not already present. We compared results with those obtained using the SILVA 16S database. Using multiple database and sample clustering parameters, each primer set's ability to detect common vaginal bacteria at the species level was determined. We also compared these methods to the use of DADA2 for denoising and clustering of sequence reads. Results: V4 sequence reads clustered at 99% identity and using the 99% clustered, extended Greengenes database provided optimal species-level identification of vaginal bacteria. Conclusions: This study is a first step toward standardizing methods for 16S rRNA gene sequencing and bioinformatics analysis of vaginal microbiome data.


Subject(s)
Bacteria/classification , Microbiota , Vagina/microbiology , Vaginosis, Bacterial/microbiology , Amidohydrolases , Bacteria/genetics , Bacteria/isolation & purification , Computational Biology/methods , Computer Simulation , DNA, Bacterial , Databases, Genetic , Female , Genes, Bacterial , High-Throughput Nucleotide Sequencing/methods , Humans , Intercellular Signaling Peptides and Proteins/genetics , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Obesity (Silver Spring) ; 26(3): 570-577, 2018 03.
Article in English | MEDLINE | ID: mdl-29464911

ABSTRACT

OBJECTIVE: This study used CD obesity-prone (OP) and obesity-resistant (OR) rats to examine how weight gain and fat accretion relate to fermentation levels and microbiota composition after feeding resistant starch (RS). METHODS: After feeding OP rats and OR rats a high-fat (HF) diet for 4 weeks, rats were stratified into three groups: they were fed either an HF diet (group 1: HF-HF) or were switched to a low-fat (LF) diet (group 2: HF-LF) or an LF diet supplemented with 20% RS by weight for 4 weeks (group 3: HF-LFRS). Energy intake, body weight, fermentation variables, and microbiota composition were determined. RESULTS: In OP rats, RS elicited robust fermentation (increased cecal contents, short-chain fatty acids, and serum glucagon-like peptide 1). Total bacteria, species of the Bacteroidales family S24-7, and the archaean Methanobrevibacter smithii increased. The robust fermentation did not elicit higher weight or fat accretion when compared with that of control rats fed the same isocaloric diets (HF-LF ± RS). In OR rats, body weight and fat accretion were also not different between HF-LF ± RS diets, but RS elicited minimal changes in fermentation and microbiota composition. CONCLUSIONS: Robust fermentation did not contribute to greater weight. Fermentation levels and changes in microbiota composition in response to dietary RS differed by obesity phenotype.


Subject(s)
Dietary Fats/adverse effects , Obesity/metabolism , Starch/adverse effects , Weight Gain/physiology , Animals , Dietary Fats/metabolism , Male , Rats , Starch/metabolism
3.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L107-L117, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28860145

ABSTRACT

Individuals with alcohol use disorders (AUDs) are at an increased risk of pneumonia and acute respiratory distress syndrome. Data of the lung microbiome in the setting of AUDs are lacking. The objective of this study was to determine the microbial biogeography of the upper and lower respiratory tract in individuals with AUDs compared with non-AUD subjects. Gargle, protected bronchial brush, and bronchoalveolar lavage specimens were collected during research bronchoscopies. Bacterial 16S gene sequencing and phylogenetic analysis was performed, and the alterations to the respiratory tract microbiota and changes in microbial biogeography were determined. The microbial structure of the upper and lower respiratory tract was significantly altered in subjects with AUDs compared with controls. Subjects with AUD have greater microbial diversity [ P < 0.0001, effect size = 16 ± 1.7 observed taxa] and changes in microbial species relative abundances. Furthermore, microbial communities in the upper and lower respiratory tract displayed greater similarity in subjects with AUDs. Alcohol use is associated with an altered composition of the respiratory tract microbiota. Subjects with AUDs demonstrate convergence of the microbial phylogeny and taxonomic communities between distinct biogeographical sites within the respiratory tract. These results support a mechanistic pathway potentially explaining the increased incidence of pneumonia and lung diseases in patients with AUDs.


Subject(s)
Alcoholism/complications , DNA, Bacterial/genetics , Microbiota , Respiratory Tract Diseases/microbiology , Respiratory Tract Diseases/pathology , Adult , Bronchoalveolar Lavage , Case-Control Studies , Female , Humans , Male , Phylogeny , RNA, Ribosomal, 16S/genetics , Respiratory Tract Diseases/genetics , Sequence Analysis, DNA
4.
PLoS Pathog ; 13(6): e1006426, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28604843

ABSTRACT

Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis). To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole) via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls) liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control) animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein. Collectively, these results suggest that alterations in the intestinal immune response as a consequence of alcohol-induced dysbiosis contribute to increased host susceptibility to Klebsiella pneumonia.


Subject(s)
Alcohol Drinking/adverse effects , Gastrointestinal Microbiome/drug effects , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Animals , Disease Models, Animal , Flow Cytometry , Lymphocytes/immunology , Male , Mice , Mice, Inbred C57BL
5.
Mol Nutr Food Res ; 61(1)2017 01.
Article in English | MEDLINE | ID: mdl-27234399

ABSTRACT

SCOPE: To determine if whole-grain (WG) flour with resistant starch (RS) will produce greater fermentation than isolated RS in obese Zucker Diabetic Fatty (ZDF) rats, and whether greater fermentation results in different microbiota, reduced abdominal fat, and increased insulin sensitivity. METHODS AND RESULTS: This study utilized four groups fed diets made with either isolated digestible control starch, WG control flour (6.9% RS), isolated RS-rich corn starch (25% RS), or WG corn flour (25% RS). ZDF rats fermented RS and RS-rich WG flour to greatest extent among groups. High-RS groups had increased serum glucagon-like peptide 1 (GLP-1) active. Feeding isolated RS showed greater Bacteroidetes to Firmicutes phyla among groups, and rats consuming low RS diets possessed more bacteria in Lactobacillus genus. However, no differences in abdominal fat were observed, but rats with isolated RS had greatest insulin sensitivity among groups. CONCLUSIONS: Data demonstrated ZDF rats (i) possess a microbiota that fermented RS, and (ii) WG high-RS fermented better than purified RS. However, fermentation and microbiota changes did not translate into reduced abdominal fat. The defective leptin receptor may limit ZDF rats from responding to increased GLP-1 and different microbiota for reducing abdominal fat, but did not prevent improved insulin sensitivity.


Subject(s)
Gastrointestinal Microbiome , Starch/metabolism , Whole Grains , Abdominal Fat , Animals , Body Weight , Cecum/metabolism , Digestion , Fermentation , Gastrointestinal Microbiome/genetics , Glucagon-Like Peptide 1/metabolism , Insulin/metabolism , Male , Obesity/metabolism , Obesity/microbiology , Rats, Zucker , Receptors, Leptin/metabolism
6.
Exp Lung Res ; 42(8-10): 425-439, 2016.
Article in English | MEDLINE | ID: mdl-27925857

ABSTRACT

BACKGROUND: Pneumocystis pneumonia is a major cause of morbidity and mortality in patients infected with HIV/AIDS. In this study, we evaluated the intestinal microbial communities associated with the development of experimental Pneumocystis pneumonia, as there is growing evidence that the intestinal microbiota is critical for host defense against fungal pathogens. METHODS: C57BL/6 mice were infected with live Pneumocystis murina (P. murina) via intratracheal inoculation and sacrificed 7 and 14 days postinfection for microbiota analysis. In addition, we evaluated the intestinal microbiota from CD4+ T cell depleted mice infected with P. murina. RESULTS: We found that the diversity of the intestinal microbial community was significantly altered by respiratory infection with P. murina. Specifically, mice infected with P. murina had altered microbial populations, as judged by changes in diversity metrics and relative taxa abundances. We also found that CD4+ T cell depleted mice infected with P. murina exhibited significantly altered intestinal microbiota that was distinct from immunocompetent mice infected with P. murina, suggesting that loss of CD4+ T cells may also affects the intestinal microbiota in the setting of Pneumocystis pneumonia. Finally, we employed a predictive metagenomics approach to evaluate various microbial features. We found that Pneumocystis pneumonia significantly alters the intestinal microbiota's inferred functional potential for carbohydrate, energy, and xenobiotic metabolism, as well as signal transduction pathways. CONCLUSIONS: Our study provides insight into specific-microbial clades and inferred microbial functional pathways associated with Pneumocystis pneumonia. Our data also suggest a role for the gut-lung axis in host defense in the lung.


Subject(s)
Gastrointestinal Microbiome , Pneumonia, Pneumocystis/microbiology , Animals , Carbohydrate Metabolism , Energy Metabolism , Host-Pathogen Interactions , Mice , Mice, Inbred C57BL , Pneumonia, Pneumocystis/metabolism , Signal Transduction , Xenobiotics
7.
Microbiome ; 4(1): 50, 2016 09 17.
Article in English | MEDLINE | ID: mdl-27640125

ABSTRACT

BACKGROUND: End-stage renal disease (ESRD) is associated with uremia and increased systemic inflammation. Alteration of the intestinal microbiota may facilitate translocation of endotoxins into the systemic circulation leading to inflammation. We hypothesized that children with ESRD have an altered intestinal microbiota and increased serum levels of bacterially derived uremic toxins. METHODS: Four groups of subjects were recruited: peritoneal dialysis (PD), hemodialysis (HD), post-kidney transplant and healthy controls. Stool bacterial composition was assessed by pyrosequencing analysis of 16S rRNA genes. Serum levels of C-reactive protein (CRP), D-lactate, p-cresyl sulfate and indoxyl sulfate were measured. RESULTS: Compared to controls, the relative abundance of Firmicutes (P = 0.0228) and Actinobacteria (P = 0.0040) was decreased in PD patients. The relative abundance of Bacteroidetes was increased in HD patients (P = 0.0462). Compared to HD patients the relative abundance of Proteobacteria (P = 0.0233) was increased in PD patients. At the family level, Enterobacteriaceae was significantly increased in PD patients (P = 0.0020) compared to controls; whereas, Bifidobacteria showed a significant decrease in PD and transplant patients (P = 0.0020) compared to control. Alpha diversity was decreased in PD patients and kidney transplant using both phylogenetic and non-phylogenetic diversity measures (P = 0.0031 and 0.0003, respectively), while beta diversity showed significant separation (R statistic = 0.2656, P = 0.010) between PD patients and controls. ESRD patients had increased serum levels of p-cresyl sulfate and indoxyl sulfate (P < 0.0001 and P < 0.0001, respectively). The data suggests that no significant correlation exists between the alpha diversity of the intestinal microbiota and CRP, D-lactate, or uremic toxins. Oral iron supplementation results in expansion of the phylum Proteobacteria. CONCLUSIONS: Children with ESRD have altered intestinal microbiota and increased bacterially derived serum uremic toxins.


Subject(s)
Cresols/blood , Gastrointestinal Microbiome/genetics , Indican/blood , Kidney Failure, Chronic/microbiology , Sulfuric Acid Esters/blood , Uremia/blood , Actinobacteria/isolation & purification , Adolescent , Bacterial Load , Bacteroidetes/isolation & purification , C-Reactive Protein/metabolism , Child , Child, Preschool , Feces/microbiology , Female , Firmicutes/isolation & purification , Humans , Intestines/microbiology , Kidney Transplantation , Lactic Acid/blood , Male , Peritoneal Dialysis , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Verrucomicrobia/isolation & purification
8.
J Immunol ; 196(6): 2655-65, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26864029

ABSTRACT

Pneumocystis pneumonia is a major cause of morbidity and mortality in immunocompromised patients, particularly those infected with HIV. In this study, we evaluated the potential of oral immunization with live Pneumocystis to elicit protection against respiratory infection with Pneumocystis murina. C57BL/6 mice vaccinated with live P. murina using a prime-boost vaccination strategy were protected from a subsequent lung challenge with P. murina at 2, 7, 14, and 28 d postinfection even after CD4(+) T cell depletion. Specifically, vaccinated immunocompetent mice had significantly faster clearance than unvaccinated immunocompetent mice and unvaccinated CD4-depleted mice remained persistently infected with P. murina. Vaccination also increased numbers of CD4(+) T cells, CD8(+) T cells, CD19(+) B cells, and CD11b(+) macrophages in the lungs following respiratory infection. In addition, levels of lung, serum, and fecal P. murina-specific IgG and IgA were increased in vaccinated animals. Furthermore, administration of serum from vaccinated mice significantly reduced Pneumocystis lung burden in infected animals compared with control serum. We also found that the diversity of the intestinal microbial community was altered by oral immunization with P. murina. To our knowledge, our data demonstrate for the first time that an oral vaccination strategy prevents Pneumocystis infection.


Subject(s)
Fungal Vaccines/immunology , Lung/immunology , Macrophages/immunology , Pneumocystis/immunology , Pneumonia, Pneumocystis/immunology , Administration, Oral , Animals , Antibodies, Fungal/metabolism , Female , Humans , Immunization , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Lung/microbiology , Lymphocyte Activation , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Pneumonia, Pneumocystis/prevention & control
9.
Microbiome ; 3: 11, 2015.
Article in English | MEDLINE | ID: mdl-25810906

ABSTRACT

BACKGROUND: Necrotizing enterocolitis (NEC) is a devastating neonatal gastrointestinal disease that primarily affects premature infants. It is characterized by bowel inflammation and necrosis. In spite of extensive research, there has been little progress in decreasing the incidence or mortality of NEC over the past three decades. The exact etiology of NEC has not been identified. However, it is believed to result from an inappropriate immune response to gut microbiota. Using 454-pyrosequencing analyses of 16S rRNA genes that were PCR-amplified from stool DNA specimens, we compared the gut microbiota of infants with NEC to matched controls without NEC. The infants with NEC were then categorized into three subgroups based on severity: mild, severe, and lethal. We compared the microbiota among these subgroups and between each severity group and appropriate controls. RESULTS: Bacterial diversity and the relative abundance of Actinobacteria and Clostridia were significantly lower in NEC specimens compared to controls. The absence of Clostridia was significantly associated with NEC. Microbial diversity and Clostridia abundance and prevalence decreased with increasing severity of NEC. CONCLUSIONS: Low bacterial diversity in stool specimens may be indicative of NEC and the severity of NEC. The low bacterial diversity, and the lack of Clostridia in lethal specimens, could indicate that the presence of a diverse bacterial population in the gut as well as the presence of taxa such as Clostridia may play a role in attenuating inflammation leading to NEC.

SELECTION OF CITATIONS
SEARCH DETAIL
...