Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(8): 5975-5989, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35427125

ABSTRACT

Galectin-3 is a ß-galactoside-specific, carbohydrate-recognizing protein (lectin) that is strongly implicated in cancer development, metastasis, and drug resistance. Galectin-3 promotes migration and ability to withstand drug treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. Due to high amino acid conservation among galectins and the shallow nature of their glycan-binding site, the design of selective potent antagonists targeting galectin-3 is challenging. Herein, we report the design and synthesis of novel taloside-based antagonists of galectin-3 with enhanced affinity and selectivity. The molecules were optimized by in silico docking, selectivity was established against four galectins, and the binding modes were confirmed by elucidation of X-ray crystal structures. Critically, the specific inhibition of galectin-3-induced BCP-ALL cell agglutination was demonstrated. The compounds decreased the viability of ALL cells even when grown in the presence of protective stromal cells. We conclude that these compounds are promising leads for therapeutics, targeting the tumor-supportive activities of galectin-3 in cancer.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Drug Design , Galectin 3/antagonists & inhibitors , Galectin 3/metabolism , Humans , Polysaccharides/chemical synthesis , Polysaccharides/chemistry , Polysaccharides/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
2.
Int J Mol Sci ; 23(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35269646

ABSTRACT

Human galectin-3 (hGal-3) is involved in a variety of biological processes and is implicated in wide range of diseases. As a result, targeting hGal-3 for clinical applications has become an intense area of research. As a step towards the development of novel hGal-3 inhibitors, we describe a study of the binding of two Se-containing hGal-3 inhibitors, specifically that of di(ß-D-galactopyranosyl)selenide (SeDG), in which two galactose rings are linked by one Se atom and a di(ß-D-galactopyranosyl)diselenide (DSeDG) analogue with a diseleno bond between the two sugar units. The binding affinities of these derivatives to hGal-3 were determined by 15N-1H HSQC NMR spectroscopy and fluorescence anisotropy titrations in solution, indicating a slight decrease in the strength of interaction for SeDG compared to thiodigalactoside (TDG), a well-known inhibitor of hGal-3, while DSeDG displayed a much weaker interaction strength. NMR and FA measurements showed that both seleno derivatives bind to the canonical S face site of hGal-3 and stack against the conserved W181 residue also confirmed by X-ray crystallography, revealing canonical properties of the interaction. The interaction with DSeDG revealed two distinct binding modes in the crystal structure which are in fast exchange on the NMR time scale in solution, explaining a weaker interaction with hGal-3 than SeDG. Using molecular dynamics simulations, we have found that energetic contributions to the binding enthalpies mainly differ in the electrostatic interactions and in polar solvation terms and are responsible for weaker binding of DSeDG compared to SeDG. Selenium-containing carbohydrate inhibitors of hGal-3 showing canonical binding modes offer the potential of becoming novel hydrolytically stable scaffolds for a new class of hGal-3 inhibitors.


Subject(s)
Blood Proteins/chemistry , Galectin 3 , Galectins/chemistry , Crystallography, X-Ray , Galactose , Galectin 3/metabolism , Galectins/metabolism , Humans , Protein Binding
3.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830047

ABSTRACT

Environmentally-mediated drug resistance in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) significantly contributes to relapse. Stromal cells in the bone marrow environment protect leukemia cells by secretion of chemokines as cues for BCP-ALL migration towards, and adhesion to, stroma. Stromal cells and BCP-ALL cells communicate through stromal galectin-3. Here, we investigated the significance of stromal galectin-3 to BCP-ALL cells. We used CRISPR/Cas9 genome editing to ablate galectin-3 in stromal cells and found that galectin-3 is dispensable for steady-state BCP-ALL proliferation and viability. However, efficient leukemia migration and adhesion to stromal cells are significantly dependent on stromal galectin-3. Importantly, the loss of stromal galectin-3 production sensitized BCP-ALL cells to conventional chemotherapy. We therefore tested novel carbohydrate-based small molecule compounds (Cpd14 and Cpd17) with high specificity for galectin-3. Consistent with results obtained using galectin-3-knockout stromal cells, treatment of stromal-BCP-ALL co-cultures inhibited BCP-ALL migration and adhesion. Moreover, these compounds induced anti-leukemic responses in BCP-ALL cells, including a dose-dependent reduction of viability and proliferation, the induction of apoptosis and, importantly, the inhibition of drug resistance. Collectively, these findings indicate galectin-3 regulates BCP-ALL cell responses to chemotherapy through the interactions between leukemia cells and the stroma, and show that a combination of galectin-3 inhibition with conventional drugs can sensitize the leukemia cells to chemotherapy.


Subject(s)
Galectin 3/antagonists & inhibitors , Galectin 3/metabolism , Mesenchymal Stem Cells/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Tumor Microenvironment/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Cycle/drug effects , Cell Line , Cell Movement/drug effects , Cell Movement/genetics , Cell Survival/drug effects , Cell Survival/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Galectin 3/genetics , Humans , Mesenchymal Stem Cells/drug effects , Mice , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Vincristine/pharmacology
4.
J Med Chem ; 63(20): 11573-11584, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32809817

ABSTRACT

Galectin-8 is a ß-galactoside-recognizing protein having an important role in the regulation of bone remodeling and cancer progression and metastasis. Methyl ß-d-galactopyranoside malonyl aromatic esters have been designed to target and engage with particular amino acid residues of the galectin-8N extended carbohydrate-binding site. The chemically synthesized compounds had in vitro binding affinity toward galectin-8N in the range of 5-33 µM, as evaluated by isothermal titration calorimetry. This affinity directly correlated with the compounds' ability to inhibit galectin-8-induced expression of chemokines and proinflammatory cytokines in the SUM159 breast cancer cell line. X-ray crystallographic structure determination revealed that these monosaccharide-based compounds bind galectin-8N by engaging its unique arginine (Arg59) and simultaneously cross-linking to another arginine (Arg45) located across the carbohydrate-binding site. This structure-based drug design approach has led to the discovery of novel monosaccharide galactose-based antagonists, with the strongest-binding compound (Kd 5.72 µM) holding 7-fold tighter than the disaccharide lactose.


Subject(s)
Drug Design , Galactosides/chemical synthesis , Galectins/antagonists & inhibitors , Binding Sites , Cell Line, Tumor , Computer Simulation , Cytokines/genetics , Female , Galactosides/chemistry , Galactosides/pharmacology , Humans , Molecular Docking Simulation , Molecular Structure , Protein Binding , Thermodynamics
5.
Viruses ; 12(6)2020 06 06.
Article in English | MEDLINE | ID: mdl-32517260

ABSTRACT

The Australasian Virology Society (AVS) aims to promote, support and advocate for the discipline of virology in the Australasian region. The society was incorporated in 2011 after 10 years operating as the Australian Virology Group (AVG) founded in 2001, coinciding with the inaugural biennial scientific meeting. AVS conferences aim to provide a forum for the dissemination of all aspects of virology, foster collaboration, and encourage participation by students and post-doctoral researchers. The tenth Australasian Virology Society (AVS10) scientific meeting was held on 2-5 December 2019 in Queenstown, New Zealand. This report highlights the latest research presented at the meeting, which included cutting-edge virology presented by our international plenary speakers Ana Fernandez-Sesma and Benjamin tenOever, and keynote Richard Kuhn. AVS10 honoured female pioneers in Australian virology, Lorena Brown and Barbara Coulson. We report outcomes from the AVS10 career development session on "Successfully transitioning from post-doc to lab head", winners of best presentation awards, and the AVS gender equity policy, initiated in 2013. Plans for the 2021 meeting are underway which will celebrate the 20th anniversary of AVS where it all began, in Fraser Island, Queensland, Australia.


Subject(s)
Virology/organization & administration , Australia , Awards and Prizes , Group Processes , Societies, Scientific
6.
Chem Biol Drug Des ; 96(4): 1123-1133, 2020 10.
Article in English | MEDLINE | ID: mdl-32220037

ABSTRACT

Galectins play key roles in numerous biological processes. Their mode of action depends on their localization which can be extracellular, cytoplasmic, or nuclear and is partly mediated through interactions with ß-galactose containing glycans. Galectins have emerged as novel therapeutic targets notably for the treatment of inflammatory disorders and cancers. This has stimulated the design of carbohydrate-based inhibitors targeting the carbohydrate recognition domains (CRDs) of the galectins. Pursuing this approach, we reasoned that linear oligogalactosides obtained by straightforward iterative click chemistry could mimic poly-lactosamine motifs expressed at eukaryote cell surfaces which the extracellular form of galectin-3, a prominent member of the galectin family, specifically recognizes. Affinities toward galectin-3 consistently increased with the length of the representative oligogalactosides but without reaching that of oligo-lactosamines. Elucidation of the X-ray crystal structures of the galectin-3 CRD in complex with a synthesized di- and tri-galactoside confirmed that the compounds bind within the carbohydrate-binding site. The atomic structures revealed that binding interactions mainly occur with the galactose moiety at the non-reducing end, primarily with subsites C and D of the CRD, differing from oligo-lactosamine which bind more consistently across the whole groove formed by the five subsites (A-E) of the galectin-3 CRD.


Subject(s)
Biopolymers/chemistry , Galactosides/chemistry , Galectins/antagonists & inhibitors , Triazoles/chemistry , Carbohydrate Conformation , Crystallography, X-Ray , Spectrum Analysis/methods
7.
FASEB J ; 33(2): 2095-2104, 2019 02.
Article in English | MEDLINE | ID: mdl-30260702

ABSTRACT

Bacterial infection is one of the leading causes of death in young, elderly, and immune-compromised patients. The rapid spread of multi-drug-resistant (MDR) bacteria is a global health emergency and there is a lack of new drugs to control MDR pathogens. We describe a heretofore-unexplored discovery pathway for novel antibiotics that is based on self-targeting, structure-disrupting peptides. We show that a helical peptide, KFF- EcH3, derived from the Escherichia coli methionine aminopeptidase can disrupt secondary and tertiary structure of this essential enzyme, thereby killing the bacterium (including MDR strains). Significantly, no detectable resistance developed against this peptide. Based on a computational analysis, our study predicted that peptide KFF- EcH3 has the strongest interaction with the structural core of the methionine aminopeptidase. We further used our approach to identify peptide KFF- NgH1 to target the same enzyme from Neisseria gonorrhoeae. This peptide inhibited bacterial growth and was able to treat a gonococcal infection in a human cervical epithelial cell model. These findings present an exciting new paradigm in antibiotic discovery using self-derived peptides that can be developed to target the structures of any essential bacterial proteins.-Zhan, J., Jia, H., Semchenko, E. A., Bian, Y., Zhou, A. M., Li, Z., Yang, Y., Wang, J., Sarkar, S., Totsika, M., Blanchard, H., Jen, F. E.-C., Ye, Q., Haselhorst, T., Jennings, M. P., Seib, K. L., Zhou, Y. Self-derived structure-disrupting peptides targeting methionine aminopeptidase in pathogenic bacteria: a new strategy to generate antimicrobial peptides.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cell Proliferation/drug effects , Gonorrhea/drug therapy , Methionine/metabolism , Neisseria gonorrhoeae/drug effects , Cells, Cultured , Cervix Uteri/drug effects , Cervix Uteri/metabolism , Cervix Uteri/microbiology , Drug Resistance, Multiple, Bacterial , Female , Gonorrhea/microbiology , Humans , Microbial Sensitivity Tests , Neisseria gonorrhoeae/enzymology
9.
ChemMedChem ; 13(16): 1664-1672, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29926535

ABSTRACT

Galectin-8 is a ß-galactoside-recognising protein that has a role in the regulation of bone remodelling and is an emerging new target for tackling diseases with associated bone loss. We have designed and synthesised methyl 3-O-[1-carboxyethyl]-ß-d-galactopyranoside (compound 6) as a ligand to target the N-terminal domain of galectin-8 (galectin-8N). Our design involved molecular dynamics (MD) simulations that predicted 6 to mimic the interactions made by the galactose ring as well as the carboxylic acid group of 3'-O-sialylated lactose (3'-SiaLac), with galectin-8N. Isothermal titration calorimetry (ITC) determined that the binding affinity of galectin-8N for 6 was 32.8 µm, whereas no significant affinity was detected for the C-terminal domain of galectin-8 (galectin-8C). The crystal structure of the galectin-8N-6 complex validated the predicted binding conformation and revealed the exact protein-ligand interactions that involve evolutionarily conserved amino acids of galectin and also those unique to galectin-8N for recognition. Overall, we have initiated and demonstrated a rational ligand design campaign to develop a monosaccharide-based scaffold as a binder of galectin-8.


Subject(s)
Galactosides/metabolism , Galectins/metabolism , Arginine/chemistry , Binding Sites , Calorimetry , Crystallography, X-Ray , Galactosides/chemical synthesis , Galactosides/chemistry , Galectins/chemistry , Humans , Ligands , Molecular Dynamics Simulation , Protein Binding , Protein Domains
10.
Chem Biol Drug Des ; 92(4): 1801-1808, 2018 10.
Article in English | MEDLINE | ID: mdl-29888844

ABSTRACT

Galectins are carbohydrate binding proteins (lectins), which characteristically bind ß-galactosides. Galectins play a role in tumour progression through involvement in proliferation, metastasis, angiogenesis, immune evasion and drug resistance. There is need for inhibitors (antagonists) that are specific for distinct galectins and that can interfere with galectin-carbohydrate interactions during cancer progression. Here, we propose that lactulose, a non-digestible galactose-fructose disaccharide, presents a novel inhibitor scaffold for design of inhibitors against galectins. Thermodynamic evaluation displays binding affinity of lactulose against the galectin-1 and galectin-3 carbohydrate recognition domain (CRD). Crystal structures of galectin-1 and galectin-3 in complex with lactulose reveal for the first time the molecular basis of the galectin-lactulose interactions. Molecular modelling was implemented to propose novel lactulose derivatives as potent anti-cancer agents.


Subject(s)
Galectin 1/antagonists & inhibitors , Galectin 3/antagonists & inhibitors , Lactulose/analogs & derivatives , Calorimetry , Crystallography, X-Ray , Drug Design , Galectin 1/genetics , Galectin 1/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Humans , Kinetics , Lactulose/metabolism , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Thermodynamics
11.
J Mol Recognit ; 31(9): e2718, 2018 09.
Article in English | MEDLINE | ID: mdl-29687510

ABSTRACT

The outer capsid spike protein VP4 of rotaviruses is a major determinant of infectivity and serotype specificity. Proteolytic cleavage of VP4 into 2 domains, VP8* and VP5*, enhances rotaviral infectivity. Interactions between the VP4 carbohydrate-binding domain (VP8*) and cell surface glycoconjugates facilitate initial virus-cell attachment and subsequent cell entry. Our saturation transfer difference nuclear magnetic resonance (STD NMR) and isothermal titration calorimetry (ITC) studies demonstrated that VP8*64-224 of canine rotavirus strain K9 interacts with N-acetylneuraminic and N-glycolylneuraminic acid derivatives, exhibiting comparable binding epitopes to VP8* from other neuraminidase-sensitive animal rotaviruses from pigs (CRW-8), cattle (bovine Nebraska calf diarrhoea virus, NCDV), and Rhesus monkeys (Simian rhesus rotavirus, RRV). Importantly, evidence was obtained for a preference by K9 rotavirus for the N-glycolyl- over the N-acetylneuraminic acid derivative. This indicates that a VP4 serotype 5A rotavirus (such as K9) can exhibit a neuraminic acid receptor preference that differs from that of a serotype 5B rotavirus (such as RRV) and the receptor preference of rotaviruses can vary within a particular VP4 genotype.


Subject(s)
Capsid Proteins/genetics , Neuraminic Acids/chemistry , Rotavirus/genetics , Viral Nonstructural Proteins/genetics , Animals , Capsid Proteins/chemistry , Carbohydrates/chemistry , Carbohydrates/genetics , Cattle , Dogs , Epitopes/genetics , Epitopes/immunology , Protein Binding/genetics , Protein Domains/genetics , Rotavirus/chemistry , Swine , Viral Nonstructural Proteins/chemistry
12.
RSC Adv ; 8(44): 24913-24922, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-35542159

ABSTRACT

A series of 3-triazole-thiogalactosides and 3,3'-triazole-thiodigalactosides substituted with different five-membered heterocycles at the C-4 triazole position were found to have high selectivity for galectin-1. Initial studies on the 3-triazole-thiogalactosides indicated that five membered heterocycles in general gave increased affinity for galectin-1 and improved selectivity over galectin-3. The selectivity profile was similar for thiodigalactosides exemplified by 3,3' substituted thien-3-yltriazole and thiazol-2-yltriazole, both having single-digit nM galectin-1 affinity and almost 10-fold galectin-1 selectivity. The binding interactions of a thiodigalactoside based galectin-1 inhibitor with two thien-3-yltriazole moieties were studied with X-ray crystallography. One of the thiophene moieties was positioned deeper into the pocket than previously reported phenyltriazoles and formed close contacts with Val31, Ser29, Gly124, and Asp123. The affinity and structural analysis thus revealed that steric and electronic optimization of five-membered aromatic heterocycle binding in a narrow galectin-1 subsite confers high affinity and selectivity.

13.
Sci Rep ; 6: 39556, 2016 12 21.
Article in English | MEDLINE | ID: mdl-28000747

ABSTRACT

Glycosphingolipids are ubiquitous cell surface molecules undertaking fundamental cellular processes. Lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are the representative core structures for lacto- and neolacto-series glycosphingolipids. These glycolipids are the carriers to the blood group antigen and human natural killer antigens mainly found on blood cells, and are also principal components in human milk, contributing to infant health. The ß-galactoside recognising galectins mediate various cellular functions of these glycosphingolipids. We report crystallographic structures of the galectin-8 N-terminal domain (galectin-8N) in complex with LNT and LNnT. We reveal the first example in which the non-reducing end of LNT binds to the primary binding site of a galectin, and provide a structure-based rationale for the significant ten-fold difference in binding affinities of galectin-8N toward LNT compared to LNnT, such a magnitude of difference not being observed for any other galectin. In addition, the LNnT complex showed that the unique Arg59 has ability to adopt a new orientation, and comparison of glycerol- and lactose-bound galectin-8N structures reveals a minimum atomic framework for ligand recognition. Overall, these results enhance our understanding of glycosphingolipids interactions with galectin-8N, and highlight a structure-based rationale for its significantly different affinity for components of biologically relevant glycosphingolipids.


Subject(s)
Galectins/chemistry , Glycosphingolipids/chemistry , Arginine/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Lactose/chemistry , Molecular Dynamics Simulation , Oligosaccharides/chemistry , Protein Binding , Protein Conformation , Protein Domains , Software
14.
J Med Chem ; 59(17): 8141-7, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27500311

ABSTRACT

Synthesis of doubly 3-O-coumarylmethyl-substituted thiodigalactosides from bis-3-O-propargyl-thiodigalactoside resulted in highly selective and high affinity galectin-3 inhibitors. Mutant studies, structural analysis, and molecular modeling revealed that the coumaryl substituents stack onto arginine side chains. One inhibitor displayed efficacy in a murine model of bleomycin-induced lung fibrosis similar to that of a known nonselective galectin-1/galectin-3 inhibitor, which strongly suggests that blocking galectin-3 glycan recognition is an important antifibrotic drug target.


Subject(s)
Coumarins/chemistry , Galactosides/chemistry , Galectin 3/antagonists & inhibitors , Polysaccharides/metabolism , Pulmonary Fibrosis/metabolism , Thiogalactosides/chemistry , Animals , Bleomycin , Coumarins/chemical synthesis , Coumarins/pharmacology , Galactosides/chemical synthesis , Galactosides/pharmacology , Galectin 3/genetics , Galectin 3/metabolism , Humans , Mice , Models, Molecular , Mutation , Protein Binding , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Structure-Activity Relationship , Thiogalactosides/chemical synthesis , Thiogalactosides/pharmacology
15.
Chembiochem ; 17(18): 1759-70, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27356186

ABSTRACT

Discovery of glycan-competitive galectin-3-binding compounds that attenuate lung fibrosis in a murine model and that block intracellular galectin-3 accumulation at damaged vesicles, hence revealing galectin-3-glycan interactions involved in fibrosis progression and in intracellular galectin-3 activities, is reported. 3,3'-Bis-(4-aryltriazol-1-yl)thiodigalactosides were synthesized and evaluated as antagonists of galectin-1, -2, -3, and -4 N-terminal, -4 C-terminal, -7 and -8 N-terminal, -9 N-terminal, and -9 C-terminal domains. Compounds displaying low-nanomolar affinities for galectins-1 and -3 were identified in a competitive fluorescence anisotropy assay. X-ray structural analysis of selected compounds in complex with galectin-3, together with galectin-3 mutant binding experiments, revealed that both the aryltriazolyl moieties and fluoro substituents on the compounds are involved in key interactions responsible for exceptional affinities towards galectin-3. The most potent galectin-3 antagonist was demonstrated to act in an assay monitoring galectin-3 accumulation upon amitriptyline-induced vesicle damage, visualizing a biochemically/medically relevant intracellular lectin-carbohydrate binding event and that it can be blocked by a small molecule. The same antagonist administered intratracheally attenuated bleomycin-induced pulmonary fibrosis in a mouse model with a dose/response profile comparing favorably with that of oral administration of the marketed antifibrotic compound pirfenidone.


Subject(s)
Bleomycin , Galectin 3/metabolism , Polysaccharides/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/prevention & control , Thioglycosides/pharmacology , Administration, Oral , Animals , Binding Sites , Disease Models, Animal , Dose-Response Relationship, Drug , Galectin 3/administration & dosage , Galectin 3/chemistry , Mice , Molecular Conformation , Polysaccharides/analysis , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Structure-Activity Relationship , Thioglycosides/administration & dosage , Thioglycosides/chemistry , Thioglycosides/therapeutic use
16.
Expert Opin Ther Pat ; 26(5): 537-54, 2016 May.
Article in English | MEDLINE | ID: mdl-26950805

ABSTRACT

INTRODUCTION: Galectins have affinity for ß-galactosides. Human galectin-1 is ubiquitously expressed in the body and its expression level can be a marker in disease. Targeted inhibition of galectin-1 gives potential for treatment of inflammatory disorders and anti-cancer therapeutics. AREAS COVERED: This review discusses progress in galectin-1 inhibitor discovery and development. Patent applications pertaining to galectin-1 inhibitors are categorised as monovalent- and multivalent-carbohydrate-based inhibitors, peptides- and peptidomimetics. Furthermore, the potential of galectin-1 protein as a therapeutic is discussed along with consideration of the unique challenges that galectin-1 presents, including its monomer-dimer equilibrium and oxidized and reduced forms, with regard to delivering an intact protein to a pathologically relevant site. EXPERT OPINION: Significant evidence implicates galectin-1's involvement in cancer progression, inflammation, and host-pathogen interactions. Conserved sequence similarity of the carbohydrate-binding sites of different galectins makes design of specific antagonists (blocking agents/inhibitors of function) difficult. Key challenges pertaining to the therapeutic use of galectin-1 are its monomer-dimer equilibrium, its redox state, and delivery of intact galectin-1 to the desired site. Developing modified forms of galectin-1 has resulted in increased stability and functional potency. Gene and protein therapy approaches that deliver the protein toward the target are under exploration as is exploitation of different inhibitor scaffolds.


Subject(s)
Galectin 1/antagonists & inhibitors , Inflammation/drug therapy , Neoplasms/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Drug Delivery Systems , Drug Design , Galectin 1/metabolism , Humans , Inflammation/pathology , Neoplasms/pathology , Patents as Topic , Proteins/administration & dosage , Proteins/pharmacology , Proteins/therapeutic use
17.
Sci Rep ; 6: 20289, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26828567

ABSTRACT

Galectin-4 is a tandem-repeat galectin with two distinct carbohydrate recognition domains (CRD). Galectin-4 is expressed mainly in the alimentary tract and is proposed to function as a lipid raft and adherens junction stabilizer by its glycan cross-linking capacity. Galectin-4 plays divergent roles in cancer and inflammatory conditions, either promoting or inhibiting each disease progression, depending on the specific pathological condition. The study of galectin-4's ligand-binding profile may help decipher its roles under specific conditions. Here we present the X-ray structures of human galectin-4 N-terminal CRD (galectin-4N) bound to different saccharide ligands. Galectin-4's overall fold and its core interactions to lactose are similar to other galectin CRDs. Galectin-4N recognises the sulfate cap of 3'-sulfated glycans by a weak interaction through Arg45 and two water-mediated hydrogen bonds via Trp84 and Asn49. When galectin-4N interacts with the H-antigen mimic, 2'-fucosyllactose, an interaction is formed between the ring oxygen of fucose and Arg45. The extended binding site of galectin-4N may not be well suited to the A/B-antigen determinants, α-GalNAc/α-Gal, specifically due to clashes with residue Phe47. Overall, galectin-4N favours sulfated glycans whilst galectin-4C prefers blood group determinants. However, the two CRDs of galectin-4 can, to a less extent, recognise each other's ligands.


Subject(s)
Galectin 4/chemistry , Glycerol/chemistry , Lactose/chemistry , Models, Molecular , Molecular Conformation , Protein Interaction Domains and Motifs , Trisaccharides/chemistry , Galectin 4/metabolism , Glycerol/metabolism , Humans , Lactose/metabolism , Protein Binding , Trisaccharides/metabolism
18.
Nat Chem Biol ; 11(12): 955-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26565989

ABSTRACT

We report the structural and functional characterization of a novel heparanase (BpHep) from the invasive pathogenic bacterium Burkholderia pseudomallei (Bp), showing ∼24% sequence identity with human heparanase (hHep). Site-directed mutagenesis studies confirmed the active site resi-dues essential for activity, and we found that BpHep has specificity for heparan sulfate. Finally, we describe the first heparanase X-ray crystal structure, which provides new insight into both substrate recognition and inhibitor design.


Subject(s)
Burkholderia pseudomallei/enzymology , Glucuronidase/chemistry , Glucuronidase/metabolism , Crystallography, X-Ray , Glucuronidase/isolation & purification , Humans , Models, Molecular , Protein Conformation
19.
Chembiochem ; 16(15): 2176-81, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26250751

ABSTRACT

Rotavirus-cell binding is the essential first step in rotavirus infection. This binding is a major determinant of rotavirus tropism, as host cell invasion is necessary to initiate infection. Initial rotavirus-cell interactions are mediated by carbohydrate-recognizing domain VP8* of the rotavirus capsid spike protein VP4. Here, we report the first observation of significant structural rearrangement of VP8* from human and animal rotavirus strains upon glycan receptor binding. The structural adaptability of rotavirus VP8* delivers important insights into how human and animal rotaviruses utilize the wider range of cellular glycans identified as VP8* binding partners. Furthermore, our studies on rotaviruses with atypical genetic makeup provide information expected to be critical for understanding the mechanisms of animal rotavirus gene emergence in humans and support implementation of epidemiologic surveillance of animal reservoirs as well as future vaccination schemes.


Subject(s)
Capsid Proteins/chemistry , Capsid Proteins/metabolism , Host Specificity , Receptors, Virus/metabolism , Rotavirus Infections/virology , Rotavirus/chemistry , Amino Acid Sequence , Animals , Carbohydrates/pharmacology , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary/drug effects , Receptors, Virus/chemistry , Rotavirus/genetics , Rotavirus/metabolism , Sequence Alignment
20.
Biochimie ; 116: 8-16, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26116885

ABSTRACT

Intracellular and extracellular functions of human galectin-1 are influenced by its redox surroundings due to the presence of six cysteines within its amino acid sequence. Galectin-1 recognises intracellular-membrane-anchored Ras proteins that act as molecular switches regulating multiple signal transduction pathways. Human tumours frequently express Ras proteins that have become continuously activated due to point mutations, and this typically leads to deregulation of tumour cell growth, angiogenesis and invasion of metastatic cancer cells. Of significance is that galectin-1 preferably recognises H-Ras, one of the human Ras isoforms, and in particular galectin-1 recognition of the H-Ras farnesyl moiety is paramount to H-Ras membrane anchorage, a prerequisite step for H-Ras-mediated signal transduction regulating normal cell growth and malignant transformation. Herein the impact of the redox state on galectin-1's ability to interact with farnesyl analogues is explored. We demonstrate for the first time that reduced galectin-1 directly binds farnesyl and does so in a carbohydrate-independent manner. A K28T mutation abolishes farnesyl recognition by reduced dimeric galectin-1 whilst its carbohydrate-binding activity is retained, thus demonstrating the presence of an independent region on galectin-1 pertaining to growth inhibitory activity. Intriguingly, oxidised galectin-1 also recognises farnesyl, the biological implication of this novel finding is yet to be elucidated. Further, the redox effect on galectin-1 extracellular function was investigated and we discover that oxidised galectin-1 demonstrates a protective effect upon acute lymphoblastic leukaemia cells challenged by oxidative stress.


Subject(s)
Galectin 1/metabolism , Cell Line , Galectin 1/chemistry , Galectin 1/genetics , Humans , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Point Mutation/genetics , Protein Structure, Secondary , Reactive Oxygen Species , ras Proteins/genetics , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...