Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 48(14): 4730-4741, 2019 Apr 14.
Article in English | MEDLINE | ID: mdl-30901013

ABSTRACT

The synthesis of polycrystalline samples of B-site doped SrRu1-xMxO3 with x≤ 0.2 by solid state methods is described for a number of dopants (M = Mg, Mn, Fe, Co, Ni, Cu, or Zn) and the structures of these established using Synchrotron X-ray powder diffraction, and for SrRu0.8Cu0.2O3 high resolution neutron diffraction. With the exception of M = Cu, samples with x = 0.2 form an orthorhombic Pbnm type perovskite structure at room temperature and these exhibit a sequence of phase transitions upon heating associated with the gradual reduction in the cooperative tilting of the corner sharing octahedra. SrRu0.8Cu0.2O3 forms a unique monoclinic structure at low temperatures and this transforms to the cubic Pm3[combining macron]m structure via an I4/mcm intermediate upon heating. The magnetic and electronic properties of the samples have been studied. Doping results in a decrease in the Curie temperature and at x = 0.2 all the samples are insulators. This is a consequence of the partial oxidation of the Ru cation that narrows the Ru 4d bands coupled with the suppression of the itinerant nature of the Ru 4d electrons due to the random distribution of the dopant cations. Ru L3-edge X-ray absorption spectroscopy of the Cu doped samples reveal a gradual increase in the average Ru oxidation sate upon doping. Electrical resistivity measurements show that doping increases the resistivity of the samples, and the temperature dependence of the resistivities are consistent with Arrhenius-type charge conduction.

2.
Inorg Chem ; 55(11): 5649-54, 2016 Jun 06.
Article in English | MEDLINE | ID: mdl-27187072

ABSTRACT

The hexagonal perovskites Ba3BiIr2O9, Ba3BiRu2O9, and Ba4BiIr3O12 all undergo pressure-induced 1% volume collapses above 5 GPa. These first-order transitions have been ascribed to internal transfer of valence electrons between bismuth and iridium/ruthenium, which is driven by external applied pressure because the reduction in volume achieved by emptying the 6s shell of bismuth upon oxidation to Bi(5+) is greater in magnitude than the increase in volume by reducing iridium or ruthenium. Here, we report direct observation of these valence transfers for the first time, using high-pressure X-ray absorption near-edge spectroscopy (XANES) measurements. Our data also support the highly unusual "4+" nominal oxidation state of bismuth in these compounds, although the possibility of local disproportionation into Bi(3+)/Bi(5+) cannot be definitively ruled out. Ab initio calculations reproduce the transition, support its interpretation as a valence electron transfer from Bi to Ir/Ru, and suggest that the high-pressure phase may show metallic behavior (in contrast to the insulating ambient-pressure phase).

3.
Inorg Chem ; 54(10): 4636-43, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25939446

ABSTRACT

LiMnTiO4 was prepared through solid-state syntheses employing different heating and cooling regimes. Synchrotron X-ray and neutron powder diffraction data found quenched LiMnTiO4 to form as single phase disordered spinel (space group Fd3̅m), whereas slowly cooled LiMnTiO4 underwent partial phase transition from Fd3̅m to P4332. The phase behavior of quenched and slowly cooled LiMnTiO4 was confirmed through variable-temperature synchrotron X-ray and neutron powder diffraction measurements. The distribution of Li between tetrahedral and octahedral sites was determined from diffraction data. Analysis of the Mn/Ti distribution in addition required Mn and Ti K-edge X-ray absorption near-edge structure spectra. These revealed the presence of Mn(3+) in primarily octahedral and Ti(4+) in octahedral and tetrahedral environments, with very slight variations depending on the synthesis conditions. Magnetic measurements indicated the dominance of antiferromagnetic interactions in both the slowly cooled and quenched samples below 4.5 K.

4.
Environ Sci Technol ; 49(11): 6504-9, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25919895

ABSTRACT

The geochemical model for Mo mineralization in the JEB Tailings Management Facility (JEB TMF), operated by AREVA Resources Canada at McClean Lake, Saskatchewan, was investigated using X-ray Absorption Near-Edge Spectroscopy (XANES), an elemental-specific technique that is sensitive to low elemental concentrations. Twenty five samples collected during the 2013 sampling campaign from various locations and depths in the TMF were analyzed by XANES. Mo K-edge XANES analysis indicated that the tailings consisted primarily of Mo(6+) species: powellite (CaMoO4), ferrimolybdite (Fe2(MoO4)3·8H2O), and molybdate adsorbed on ferrihydrite (Fe(OH)3 - MoO4). A minor concentration of a Mo(4+) species in the form of molybdenite (MoS2) was also present. Changes in the Mo mineralization over time were inferred by comparing the relative amounts of the Mo species in the tailings to the independently measured aqueous Mo pore water concentration. It was found that ferrimolybdite and molybdate adsorbed on ferrihydrite initially dissolves in the TMF and precipitates as powellite.


Subject(s)
Minerals/chemistry , Models, Theoretical , Molybdenum/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Environmental Monitoring/methods , Ferric Compounds/chemistry , Lakes/analysis , Lakes/chemistry , Saskatchewan , Water Pollutants, Chemical/analysis , X-Ray Absorption Spectroscopy
5.
Dalton Trans ; 44(23): 10681-8, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-25631209

ABSTRACT

The relaxor ferroelectric K(0.5)Bi(0.5)TiO(3) has been synthesised in a solid-solution series with K(0.5)Bi(0.5)ZrO(3), as K(0.5)Bi(0.5)Ti1-xZrxO(3). High-resolution synchrotron X-ray powder diffraction and X-ray absorption near edge structure spectroscopy were used to characterise the long-range average and local structural behaviour. Rietveld refinements against diffraction data show that a pseudocubic tetragonal region exists across the whole solid-solution series, with truly cubic symmetry only observed at x = 1 (pure KBZ). Variable-temperature diffraction data for x = 0 (pure KBT) showed a broad ferroelectric transition from tetragonal to cubic symmetry at approximately 683 K with a coexistence of both phases close to that temperature, accompanied by a marked volume contraction. Ti K-edge data showed that Zr doping has a minimal effect on Ti off-centering, and revealed no evidence for local clustering. Metal L-edges showed that Ti(4+) cations remain off-centered with increasing Zr content, while Zr(4+) cations approach a higher-symmetry coordination environment, most likely due to the increased size of the Zr atoms. Although there is a minimal effect on actual Ti-offsets, an effective dilution of these environments by Zr doping leads to a reduction in polar domains and a diminished ferroelectric response.

6.
J Synchrotron Radiat ; 21(Pt 6): 1275-81, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25343795

ABSTRACT

Tc L3-edge XANES spectra have been collected on powder samples of SrTcO3 (octahedral Tc(4+)) and NH4TcO4 (tetrahedral Tc(7+)) immobilized in an epoxy resin. Features in the Tc L3-edge XANES spectra are compared with the pre-edge feature of the Tc K-edge as well as other 4d transition metal L3-edges. Evidence of crystal field splitting is obvious in the Tc L3-edge, which is sensitive to the coordination number and oxidation state of the Tc cation. The Tc L3 absorption edge energy difference between SrTcO3 (Tc(4+)) and NH4TcO4 (Tc(7+)) shows that the energy shift at the Tc L3-edge is an effective tool for studying changes in the oxidation states of technetium compounds. The Tc L3-edge spectra are compared with those obtained from Mo and Ru oxide standards with various oxidation states and coordination environments. Most importantly, fitting the Tc L3-edge to component peaks can provide direct evidence of crystal field splitting that cannot be obtained from the Tc K-edge.

7.
Dalton Trans ; 43(46): 17358-65, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25327834

ABSTRACT

The structural properties of (Bi0.5Na0.5)Ti1-xZrxO3 (where 0 ≤ x ≤ 0.7) have been investigated using powder diffraction and X-ray absorption spectroscopy. Diffraction measurements on (Bi0.5Na0.5)TiO3 confirm that both monoclinic Cc and rhombohedral R3c phases are present at room temperature. Doping small amounts of Zr into the B site of (Bi0.5Na0.5)TiO3 initially stabilizes the rhombohedral phase before the orthorhombic Pnma phase begins to form at x = 0.5. Analysis of the Ti K-edge and Zr L3-edge XANES spectra show that the crystallographic phase change has very little effect on the local structure of Ti(4+)/Zr(4+) cations, suggesting that there is little change in the cation off-center displacement within the BO6 octahedra with each successive phase change.

8.
Angew Chem Int Ed Engl ; 53(13): 3414-7, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24616087

ABSTRACT

Pressure-induced charge transfer from Bi to Ir/Ru is observed in the hexagonal perovskites Ba(3+n)BiM(2+n)O(9+3n) (n=0,1; M=Ir,Ru). These compounds show first-order, circa 1% volume contractions at room temperature above 5 GPa, which are due to the large reduction in the effective ionic radius of Bi when the 6s shell is emptied on oxidation, compared to the relatively negligible effect of reduction on the radii of Ir or Ru. They are the first such transitions involving 4d and 5d compounds, and they double the total number of cases known. Ab initio calculations suggest that magnetic interactions through very short (ca. 2.6 Å) M-M bonds contribute to the finely balanced nature of their electronic states.

9.
Dalton Trans ; 43(18): 6909-18, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24667811

ABSTRACT

The structural, magnetic and electrical properties of the mixed Ti-Mn oxides Sr(1-x)La(x)Ti(0.5)Mn(0.5)O3 (0 ≤ x ≤ 0.5) are reported. At room temperature the oxides have a cubic structure in space group Pm3m for x ≤ 0.25 and rhombohedral in R3c for 0.3 ≤ x ≤ 0.50. X-ray absorption spectroscopic measurements demonstrate the addition of La(3+) is compensated by the partial reduction of Mn(4+) to Mn(3+). Variable temperature neutron diffraction measurements show that cooling Sr(0.6)La(0.4)Ti(0.5)Mn(0.5)O3 results in a first order transition from rhombohedra to an orthorhombic structure in Imma. Complex magnetic behaviour is observed. The magnetic behaviour of the mixed valent (Mn(3+/4+)) examples is dominated by ferromagnetic interactions, although cation disorder frustrates long range magnetic ordering.

10.
Inorg Chem ; 53(4): 2240-7, 2014 Feb 17.
Article in English | MEDLINE | ID: mdl-24483991

ABSTRACT

Oxides of the type LaCr(1-y)Cu(y)O3 have been prepared using solid-state methods and their crystal structures refined using synchrotron X-ray powder diffraction. The solubility limit of Cu was found to be around y = 0.2, and such oxides are orthorhombic in space group Pbnm. X-ray absorption spectroscopy measurements at the Cr and Cu L-edges demonstrated that the Cr remains trivalent upon Cu doping, with the Cu being present as Cu(III). The oxides are found to be antiferromagnets, and the Néel temperature, TN, decreases as the Cu content is increased. The crystal and magnetic structures of one example La(Cr0.85Cu0.15)O3 have been investigated between 3 and 350 K by neutron powder diffraction. The samples are semiconductors.

11.
Inorg Chem ; 53(2): 952-60, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24364379

ABSTRACT

The key role played by bismuth in an average intermediate oxidation state in the magnetoelastic spin-gap compounds Ba3BiRu2O9 and Ba3BiIr2O9 has been confirmed by systematically replacing bismuth with La(3+) and Ce(4+). Through a combination of powder diffraction (neutron and synchrotron), X-ray absorption spectroscopy, and magnetic properties measurements, we show that Ru/Ir cations in Ba3BiRu2O9 and Ba3BiIr2O9 have oxidation states between +4 and +4.5, suggesting that Bi cations exist in an unusual average oxidation state intermediate between the conventional +3 and +5 states (which is confirmed by the Bi L3-edge spectrum of Ba3BiRu2O9). Precise measurements of lattice parameters from synchrotron diffraction are consistent with the presence of intermediate oxidation state bismuth cations throughout the doping ranges. We find that relatively small amounts of doping (∼10 at%) on the bismuth site suppress and then completely eliminate the sharp structural and magnetic transitions observed in pure Ba3BiRu2O9 and Ba3BiIr2O9, strongly suggesting that the unstable electronic state of bismuth plays a critical role in the behavior of these materials.

12.
Dalton Trans ; 42(41): 14875-82, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23989102

ABSTRACT

The pyrochlore-defect fluorite phase transition in the mixed-metal zirconate Nd2-xYxZr2O7 (0 ≤ x ≤ 2) solid solution was investigated using synchrotron X-ray and neutron diffraction, as well as X-ray absorption spectroscopy. Diffraction analysis revealed a two-phase region between 1.0 ≤ x ≤ 1.2. In the pyrochlore phase, Zr L3-edge XANES analysis demonstrated a gradual change in the local coordination environment of the B site with increasing Y content that was consistent with an increase in disorder. Although Y L3-edge XANES analysis suggested that the Y cations remained in an ordered coordination environment in the pyrochlore phase, disorder did gradually increase once the fluorite phase formed. It was found that Y cations prefer an ordered coordination environment near the phase boundary whereas Zr cations prefer a disordered coordination environment.

13.
Inorg Chem ; 52(15): 8409-15, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23844979

ABSTRACT

The pyrochlore-defect fluorite order-disorder transition has been studied for a series of oxides of the type Gd(2-x)Tb(x)Zr2O7 by a combination of diffraction and spectroscopy techniques. Synchrotron X-ray diffraction data suggest an abrupt transition from the coexistence of pyrochlore and defect fluorite phases to a single defect fluorite phase with increasing Tb content. However neutron diffraction data, obtained at λ ≈ 0.497 Å for all Gd-containing samples to minimize absorption, not only provide evidence for independent ordering of the anion and cation sublattices but also suggest that the disorder transition across the pyrochlore-defect fluorite boundary of Ln2Zr2O7 is rather gradual. Such disorder was also evident in X-ray absorption measurements at the Zr L3-edge, which showed a gradual increase in the effective coordination number of the Zr from near 6-coordinate in the pyrochlore rich samples to near 7-coordinate in the Tb rich defect fluorites. These results indicate the presence of ordered domains throughout the defect fluorite region, and demonstrate the gradual nature of the order-disorder transition across the Gd(2-x)Tb(x)Zr2O7 series.

14.
J Phys Condens Matter ; 25(33): 335401, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23880709

ABSTRACT

The nuclear and magnetic structures and properties of Sr0.65Pr0.35-xCexMnO3 (0.00 ≤ x ≤ 0.35) were investigated using a combination of synchrotron x-ray and neutron powder diffraction, along with magnetic and x-ray absorption near edge structure measurements. At room temperature, doping with Ce results in a transition from a tetragonal structure in I4/mcm to an orthorhombic one in Imma associated with the loss of long range orbital ordering. At low temperatures, we observe the formation of an orthorhombic Fmmm phase. XANES measurements demonstrate that the Ce exists as a mixture of Ce(3+) and Ce(4+).

15.
J Am Chem Soc ; 135(17): 6477-84, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23570580

ABSTRACT

The high-temperature cubic form of bismuth oxide, δ-Bi2O3, is the best intermediate-temperature oxide-ionic conductor known. The most elegant way of stabilizing δ-Bi2O3 to room temperature, while preserving a large part of its conductivity, is by doping with higher valent transition metals to create wide solid-solutions fields with exceedingly rare and complex (3 + 3)-dimensional incommensurately modulated "hypercubic" structures. These materials remain poorly understood because no such structure has ever been quantitatively solved and refined, due to both the complexity of the problem and a lack of adequate experimental data. We have addressed this by growing a large (centimeter scale) crystal using a novel refluxing floating-zone method, collecting high-quality single-crystal neutron diffraction data, and treating its structure together with X-ray diffraction data within the superspace symmetry formalism. The structure can be understood as an "inflated" pyrochlore, in which corner-connected NbO6 octahedral chains move smoothly apart to accommodate the solid solution. While some oxide vacancies are ordered into these chains, the rest are distributed throughout a continuous three-dimensional network of wide δ-Bi2O3-like channels, explaining the high oxide-ionic conductivity compared to commensurately modulated phases in the same pseudobinary system.

16.
Inorg Chem ; 51(24): 13237-44, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23057771

ABSTRACT

The zirconates Ln(2)Zr(2)O(7) (Ln = lanthanoid) have been studied using a combination of Zr L-edge X-ray absorption near edge structure (XANES) and synchrotron X-ray and neutron powder diffraction methods. These studies demonstrate that as the size of the lanthanoid cation decreases, the local structure evolves smoothly from the ideal pyrochlore toward the defect fluorite rather than undergoing an abrupt transformation. The Zr L-edge spectrum is found to be extremely sensitive to changes in the local coordination environment and demonstrates an increase in local disorder across the pyrochlore oxides. The sensitivity of the XANES measurements enables us to identify the progressive nature of the transition that could not be detected using bulk diffraction techniques.

17.
J Am Chem Soc ; 134(6): 3265-70, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22296219

ABSTRACT

As compared to 3d (first-row) transition metals, the 4d and 5d transition metals have much more diffuse valence orbitals. Quantum cooperative phenomena that arise due to changes in the way these orbitals overlap and interact, such as magnetoelasticity, are correspondingly rare in 4d and 5d compounds. Here, we show that the 6H-perovskite Ba(3)BiIr(2)O(9), which contains 5d Ir(4+) (S = 1/2) dimerized into isolated face-sharing Ir(2)O(9) bioctahedra, exhibits a giant magnetoelastic effect, the largest of any known 5d compound, associated with the opening of a spin-gap at T* = 74 K. The resulting first-order transition is characterized by a remarkable 4% increase in Ir-Ir distance and 1% negative thermal volume expansion. The transition is driven by a dramatic change in the interactions among Ir 5d orbitals, and represents a crossover between two very different, competing, ground states: one that optimizes direct Ir-Ir bonding (at high temperature), and one that optimizes Ir-O-Ir magnetic superexchange (at low temperature).

18.
Inorg Chem ; 49(5): 2325-33, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20128600

ABSTRACT

The rare-earth iron arsenides RE(12)Fe(57.5)As(41) (RE = La, Ce) have been prepared by direct reactions of the elements in the presence of a Sn flux. Analysis of single-crystal X-ray diffraction data reveals that they adopt a new orthorhombic structure type (Pearson symbol oP236, space group Pmmn, Z = 2; a = 10.8881(9) A, b = 25.753(2) A, c = 12.5436(10) A for RE = La; a = 10.8376(8) A, b = 25.639(2) A, c = 12.4701(9) A for RE = Ce). In this metal-rich arsenide, the complex three-dimensional network (derived from 4 RE, 24 Fe, and 17 As sites) can be described as being built from unusual wavelike layers of connected As-centered trigonal prisms. Five of the Fe sites are partially occupied. The electronic structure of these compounds was probed through core-line X-ray photoelectron spectra. Magnetic susceptibility measurements indicated ferromagnetic ordering at T(C) = 125 and 95 K for the La and Ce compounds, respectively. Electrical resistivity measurements on single crystals of Ce(12)Fe(57.5)As(41) showed metallic behavior with a prominent transition that coincides closely with the ferromagnetic ordering temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...