Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Parasite ; 30: 49, 2023.
Article in English | MEDLINE | ID: mdl-37962478

ABSTRACT

Olfaction is a major sense in Varroa destructor. In natural conditions, it is known that this honey bee parasite relies on kairomones to detect its host or to reproduce. Yet, in artificial conditions, the parasite is able to feed and survive for a few days even though most honey bee pheromones are lacking. Other key cues are thus probably involved in V. destructor perception of its close environment. Here, we used several artificial feeding designs to explore the feeding behaviour of the parasite when it is deprived of olfactory cues. We found that V. destructor is still able to feed only guided by physical cues. The detection of the food source seems to be shape-related as a 3D membrane triggers arrestment and exploration more than a 2D membrane. The tactile sense of V. destructor could thus be essential to detect a feeding site, although further studies are needed to assess the importance of this sense combined with olfaction in natural conditions.


Title: Varroa destructor s'appuie sur des signaux physiques pour se nourrir dans des conditions artificielles. Abstract: L'olfaction est un sens prépondérant chez Varroa destructor. En conditions naturelles, ce parasite de l'abeille domestique dépend en effet de kairomones qui lui permettent de détecter son hôte ou de se reproduire. Pourtant, lorsqu'il se retrouve en conditions artificielles, le parasite se nourrit et survit plusieurs jours malgré l'absence de la majorité des phéromones émises par l'abeille. Des indices clés autres qu'olfactifs sont donc très probablement impliqués dans la perception de l'environnement de V. destructor. Dans cette étude, plusieurs dispositifs d'alimentation artificielle ont été testés afin d'explorer le comportement de nourrissage du parasite lorsqu'il est privé d'indices olfactifs. Les résultats montrent que V. destructor est tout à fait capable de se nourrir en étant uniquement guidé par des indices physiques. En l'occurrence, la détection de la source nutritive semble être liée à sa forme puisqu'une membrane 3D provoque des comportements exploratoires plus prononcés qu'une membrane plane (2D). Le sens du toucher serait donc essentiel à V. destructor pour trouver son site de nourrissage. Des études complémentaires permettraient néanmoins d'évaluer les importances relatives des sens olfactif et tactile en conditions naturelles.


Subject(s)
Varroidae , Animals , Bees , Cues , Feeding Behavior
2.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569818

ABSTRACT

Varroa destructor, a major ectoparasite of the Western honey bee Apis mellifera, is a widespread pest that damages colonies in the Northern Hemisphere. Throughout their lifecycle, V. destructor females feed on almost every developmental stage of their host, from the last larval instar to the adult. The parasite is thought to feed on hemolymph and fat body, although its exact diet and nutritional requirements are poorly known. Using artificial Parafilm™ dummies, we explored the nutrition of V. destructor females and assessed their survival when fed on hemolymph from bee larvae, pupae, or adults. We compared the results with mites fed on synthetic solutions or filtered larval hemolymph. The results showed that the parasites could survive for several days or weeks on different diets. Bee larval hemolymph yielded the highest survival rates, and filtered larval plasma was sufficient to maintain the mites for 14 days or more. This cell-free solution therefore theoretically contains all the necessary nutrients for mite survival. Because some bee proteins are known to be hijacked without being digested by the parasite, we decided to run a proteomic analysis of larval honey bee plasma to highlight the most common proteins in our samples. A list of 54 proteins was compiled, including several energy metabolism proteins such as Vitellogenin, Hexamerin, or Transferrins. These molecules represent key nutrient candidates that could be crucial for V. destructor survival.

3.
Glob Chang Biol ; 28(15): 4495-4505, 2022 08.
Article in English | MEDLINE | ID: mdl-35574993

ABSTRACT

Chemical communication via infochemicals plays a pivotal role in ecological interactions, allowing organisms to sense their environment, locate predators, food, habitats, or mates. A growing number of studies suggest that climate change-associated stressors can modify these chemically mediated interactions, causing info-disruption that scales up to the ecosystem level. However, our understanding of the underlying mechanisms is scarce. Evidenced by a range of examples, we illustrate in this opinion piece that climate change affects different realms in similar patterns, from molecular to ecosystem-wide levels. We assess the importance of different stressors for terrestrial, freshwater, and marine ecosystems and propose a systematic approach to address highlighted knowledge gaps and cross-disciplinary research avenues.


Subject(s)
Climate Change , Ecosystem , Fresh Water
4.
Nat Chem Biol ; 17(5): 524-530, 2021 05.
Article in English | MEDLINE | ID: mdl-33495646

ABSTRACT

Invasive species events related to globalization are increasing, resulting in parasitic outbreaks. Understanding of host defense mechanisms is needed to predict and mitigate against the consequences of parasite invasion. Using the honey bee Apis mellifera and the mite Varroa destructor, as a host-parasite model, we provide a comprehensive study of a mechanism of parasite detection that triggers a behavioral defense associated with social immunity. Six Varroa-parasitization-specific (VPS) compounds are identified that (1) trigger Varroa-sensitive hygiene (VSH, bees' key defense against Varroa sp.), (2) enable the selective recognition of a parasitized brood and (3) induce responses that mimic intrinsic VSH activity in bee colonies. We also show that individuals engaged in VSH exhibit a unique ability to discriminate VPS compounds from healthy brood signals. These findings enhance our understanding of a critical mechanism of host defense against parasites, and have the potential to apply the integration of pest management in the beekeeping sector.


Subject(s)
Acetates/isolation & purification , Bees/metabolism , Behavior, Animal/physiology , Complex Mixtures/chemistry , Ketones/isolation & purification , Varroidae/chemistry , Acetates/chemistry , Acetates/pharmacology , Animals , Bees/cytology , Bees/drug effects , Bees/parasitology , Behavior, Animal/drug effects , Biological Assay , Complex Mixtures/pharmacology , Female , Host-Parasite Interactions , Ketones/chemistry , Ketones/pharmacology , Varroidae/pathogenicity
5.
Int J Parasitol ; 50(6-7): 433-447, 2020 06.
Article in English | MEDLINE | ID: mdl-32380096

ABSTRACT

The ectoparasitic mite Varroa destructor is the most significant pathological threat to the western honey bee, Apis mellifera, leading to the death of most colonies if left untreated. An alternative approach to chemical treatments is to selectively enhance heritable honey bee traits of resistance or tolerance to the mite through breeding programs, or select for naturally surviving untreated colonies. We conducted a literature review of all studies documenting traits of A. mellifera populations either selectively bred or naturally selected for resistance and tolerance to mite parasitism. This allowed us to conduct an analysis of the diversity, distribution and importance of the traits in different honey bee populations that can survive V. destructor globally. In a second analysis, we investigated the genetic bases of these different phenotypes by comparing 'omics studies (genomics, transcriptomics, and proteomics) of A. mellifera resistance and tolerance to the parasite. Altogether, this review provides a detailed overview of the current state of the research projects and breeding efforts against the most devastating parasite of A. mellifera. By highlighting the most promising traits of Varroa-surviving bees and our current knowledge on their genetic bases, this work will help direct future research efforts and selection programs to control this pest. Additionally, by comparing the diverse populations of honey bees that exhibit those traits, this review highlights the consequences of anthropogenic and natural selection in the interactions between hosts and parasites.


Subject(s)
Bees/genetics , Bees/parasitology , Varroidae , Animals , Genomics , Host-Parasite Interactions , Phenotype , Varroidae/pathogenicity
6.
Insects ; 9(2)2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29677172

ABSTRACT

Honeydew is considered a cornerstone of the interactions between aphids and their natural enemies. Bacteria activity occurring in aphid honeydew typically results in the release of volatile organic compounds (VOCs) that are used by the natural enemies of aphids to locate their prey. Because atmospheric carbon dioxide (CO2) concentration directly impacts the physiology of plants, we raise the hypothesis that elevated CO2 concentrations impact the quantity of honeydew produced by aphids, as well as the diversity and quantity of honeydew VOCs, leading to cascade effects on the foraging behavior of aphids' natural enemies. Using solid-phase microextraction, we analyzed the VOCs emitted by honeydew from pea aphids (Acyrthosiphon pisum Harris) reared under 450 ± 50 ppm of CO2 (aCO2) or 800 ± 50 ppm CO2 (eCO2). While the total amount of honeydew excreted was only slightly reduced by eCO2 concentrations, we detected qualitative and quantitative differences in the semiochemistry of aphid honeydew between CO2 conditions. Three VOCs were not found in the honeydew of eCO2 aphids: 3-methyl-2-buten-1-ol, 2-methyl-1-butanol, and isobutanol. However, no difference was observed in the searching and oviposition behaviors of hoverfly (Episyrphus balteatus (De Geer)) females exposed to plants covered with honeydew originating from the different CO2 conditions. The present work showed the effect of a particular aspect of atmospheric changes, and should be extended to other abiotic parameters, such as temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...