Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(8): e0269684, 2022.
Article in English | MEDLINE | ID: mdl-35921328

ABSTRACT

Canonical aminoglycosides are a large group of antibiotics, where the part of chemical diversity stems from the substitution of the neamine ring system on positions 5 and 6. Certain aminoglycoside modifying enzymes can modify a broad range of 4,5- and 4,6-disubstituted aminoglycosides, with some as many as 15. This study presents the structural and kinetic results describing a promiscuous aminoglycoside acetyltransferase AAC(3)-IIIa. This enzyme has been crystallized in ternary complex with coenzyme A and 4,5- and 4,6-disubstituted aminoglycosides. We have followed up this work with kinetic characterization utilizing a panel of diverse aminoglycosides, including a next-generation aminoglycoside, plazomicin. Lastly, we observed an alternative binding mode of gentamicin in the aminoglycoside binding site, which was proven to be a crystallographic artifact based on mutagenesis.


Subject(s)
Acetyltransferases , Aminoglycosides , Acetyltransferases/metabolism , Aminoglycosides/chemistry , Anti-Bacterial Agents/chemistry , Substrate Specificity
2.
Sci Rep ; 11(1): 11614, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078922

ABSTRACT

Plazomicin is currently the only next-generation aminoglycoside approved for clinical use that has the potential of evading the effects of widespread enzymatic resistance factors. However, plazomicin is still susceptible to the action of the resistance enzyme AAC(2')-Ia from Providencia stuartii. As the clinical use of plazomicin begins to increase, the spread of resistance factors will undoubtedly accelerate, rendering this aminoglycoside increasingly obsolete. Understanding resistance to plazomicin is an important step to ensure this aminoglycoside remains a viable treatment option for the foreseeable future. Here, we present three crystal structures of AAC(2')-Ia from P. stuartii, two in complex with acetylated aminoglycosides tobramycin and netilmicin, and one in complex with a non-substrate aminoglycoside, amikacin. Together, with our previously reported AAC(2')-Ia-acetylated plazomicin complex, these structures outline AAC(2')-Ia's specificity for a wide range of aminoglycosides. Additionally, our survey of AAC(2')-I homologues highlights the conservation of residues predicted to be involved in aminoglycoside binding, and identifies the presence of plasmid-encoded enzymes in environmental strains that confer resistance to the latest next-generation aminoglycoside. These results forecast the likely spread of plazomicin resistance and highlight the urgency for advancements in next-generation aminoglycoside design.


Subject(s)
Acetyltransferases/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Drug Resistance, Bacterial/genetics , Providencia/enzymology , Sisomicin/analogs & derivatives , Acetyltransferases/genetics , Acetyltransferases/metabolism , Amikacin/chemistry , Amikacin/metabolism , Amikacin/pharmacology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Models, Molecular , Netilmicin/chemistry , Netilmicin/metabolism , Netilmicin/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Providencia/chemistry , Providencia/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sisomicin/chemistry , Sisomicin/metabolism , Sisomicin/pharmacology , Substrate Specificity , Tobramycin/chemistry , Tobramycin/metabolism , Tobramycin/pharmacology
3.
Structure ; 25(5): 750-761.e5, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28416110

ABSTRACT

The macrolides are a class of antibiotic, characterized by a large macrocyclic lactone ring that can be inactivated by macrolide phosphotransferase enzymes. We present structures for MPH(2')-I and MPH(2')-II in the apo state, and in complex with GTP analogs and six different macrolides. These represent the first structures from the two main classes of macrolide phosphotransferases. The structures show that the enzymes are related to the aminoglycoside phosphotransferases, but are distinguished from them by the presence of a large interdomain linker that contributes to an expanded antibiotic binding pocket. This pocket is largely hydrophobic, with a negatively charged patch located at a conserved aspartate residue, rationalizing the broad-spectrum resistance conferred by the enzymes. Complementary mutation studies provide insights into factors governing substrate specificity. A comparison with macrolides bound to their natural target, the 50S ribosome, suggests avenues for next-generation antibiotic development.


Subject(s)
Bacterial Proteins/chemistry , Drug Resistance, Bacterial , Macrolides/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Bacteria/drug effects , Bacteria/enzymology , Bacterial Proteins/metabolism , Binding Sites , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Macrolides/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Binding , Substrate Specificity
4.
PLoS One ; 7(12): e52283, 2012.
Article in English | MEDLINE | ID: mdl-23284969

ABSTRACT

Enzyme engineering has been facilitated by recombination of close homologues, followed by functional screening. In one such effort, chimeras of two class-A ß-lactamases - TEM-1 and PSE-4 - were created according to structure-guided protein recombination and selected for their capacity to promote bacterial proliferation in the presence of ampicillin (Voigt et al., Nat. Struct. Biol. 2002 9:553). To provide a more detailed assessment of the effects of protein recombination on the structure and function of the resulting chimeric enzymes, we characterized a series of functional TEM-1/PSE-4 chimeras possessing between 17 and 92 substitutions relative to TEM-1 ß-lactamase. Circular dichroism and thermal scanning fluorimetry revealed that the chimeras were generally well folded. Despite harbouring important sequence variation relative to either of the two 'parental' ß-lactamases, the chimeric ß-lactamases displayed substrate recognition spectra and reactivity similar to their most closely-related parent. To gain further insight into the changes induced by chimerization, the chimera with 17 substitutions was investigated by NMR spin relaxation. While high order was conserved on the ps-ns timescale, a hallmark of class A ß-lactamases, evidence of additional slow motions on the µs-ms timescale was extracted from model-free calculations. This is consistent with the greater number of resonances that could not be assigned in this chimera relative to the parental ß-lactamases, and is consistent with this well-folded and functional chimeric ß-lactamase displaying increased slow time-scale motions.


Subject(s)
beta-Lactamases/chemistry , beta-Lactamases/metabolism , Circular Dichroism , Fluorometry , Kinetics , Magnetic Resonance Spectroscopy , Protein Structure, Secondary , beta-Lactamases/genetics
5.
Biochemistry ; 49(22): 4601-10, 2010 Jun 08.
Article in English | MEDLINE | ID: mdl-20214400

ABSTRACT

Natriuretic peptide receptor A (NPRA) is a noncovalent homodimeric receptor, composed of an extracellular domain (ECD) with a ligand-binding site, a single transmembrane domain (TM), and an intracellular domain (ICD) exhibiting guanylyl cyclase activity. NPRA activation by atrial natriuretic peptide (ANP) leads to cGMP production, which plays important roles in cardiovascular homeostasis. Initial studies have shown that activation of NPRA involves a conformational change in the juxtamembrane domain (JM). However, crystallographic study of the soluble ECD of NPRA has failed to document JM structure, and the conformational change involved in transmembrane signal transduction is still unknown. To analyze this conformational change, we first sequentially substituted nine amino acids of the JM with a cysteine residue. By studying the mutant's capacity to form ANP-induced or constitutive covalent disulfide dimers, we evaluated the relative proximity of JM residues, before and after NPRA activation. These results obtained with the full-length receptor demonstrate a high proximity of specific JM residues and are in disagreement with crystallography data. We also tested the hypothesis that signal transduction involves a TM rotation mechanism leading to ICD activation. By introducing one to five alanine residues into the TM alpha-helix, we show that a TM rotation of 40 degrees leads to constitutive NPRA activation. We finally studied the role of the TM in NPRA dimerization. By using the ToxR system, we demonstrate that the last JM residues are required to stabilize the TM dimer. Using these experimental data, we generated a new molecular model illustrating the active conformation of NPRA, where the JM and TM are depicted.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/physiology , Protein Conformation , Receptors, Atrial Natriuretic Factor/chemistry , Receptors, Atrial Natriuretic Factor/physiology , Alanine/genetics , Amino Acid Substitution/genetics , Animals , Bacterial Proteins/genetics , Cell Line , Cysteine/genetics , DNA-Binding Proteins/genetics , Dimerization , Escherichia coli Proteins/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Protein Stability , Protein Structure, Tertiary/genetics , Rats , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism , Signal Transduction/genetics , Transcription Factors/genetics
6.
J Biol Chem ; 284(30): 20079-89, 2009 Jul 24.
Article in English | MEDLINE | ID: mdl-19478082

ABSTRACT

Methotrexate is a slow, tight-binding, competitive inhibitor of human dihydrofolate reductase (hDHFR), an enzyme that provides key metabolites for nucleotide biosynthesis. In an effort to better characterize ligand binding in drug resistance, we have previously engineered hDHFR variant F31R/Q35E. This variant displays a >650-fold decrease in methotrexate affinity, while maintaining catalytic activity comparable to the native enzyme. To elucidate the molecular basis of decreased methotrexate affinity in the doubly substituted variant, we determined kinetic and inhibitory parameters for the simple variants F31R and Q35E. This demonstrated that the important decrease of methotrexate affinity in variant F31R/Q35E is a result of synergistic effects of the combined substitutions. To better understand the structural cause of this synergy, we obtained the crystal structure of hDHFR variant F31R/Q35E complexed with methotrexate at 1.7-A resolution. The mutated residue Arg-31 was observed in multiple conformers. In addition, seven native active-site residues were observed in more than one conformation, which is not characteristic of the wild-type enzyme. This suggests that increased residue disorder underlies the observed methotrexate resistance. We observe a considerable loss of van der Waals and polar contacts with the p-aminobenzoic acid and glutamate moieties. The multiple conformers of Arg-31 further suggest that the amino acid substitutions may decrease the isomerization step required for tight binding of methotrexate. Molecular docking with folate corroborates this hypothesis.


Subject(s)
Enzyme Inhibitors/metabolism , Methotrexate/metabolism , Point Mutation , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Catalytic Domain , Crystallography, X-Ray , Drug Resistance , Enzyme Inhibitors/chemistry , Folic Acid/chemistry , Folic Acid/metabolism , Humans , Methotrexate/chemistry , Models, Molecular , Protein Binding , Protein Conformation , Structure-Activity Relationship , Tetrahydrofolate Dehydrogenase/metabolism
7.
J Membr Biol ; 215(2-3): 169-80, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17568977

ABSTRACT

The voltage-gated Na(+) channel of Bacillus halodurans (NaChBac) is composed of six transmembrane segments (S1-S6), with a pore-forming region composed of segments S5 and S6 and a voltage-sensing domain composed of segments S1-S4. The S4 segment forms the core of the voltage sensor. We explored the accessibility of four arginine residues on the S4 segment of NaChBac, which are positioned at every third position from each other. These arginine residues on the S4 segment were replaced with cysteines using site-directed mutagenesis. Na(+) currents were recorded using the whole-cell configuration of the patch-clamp technique. We tested the effect of the sulfhydryl reagents applied from inside and outside the cellular space in the open and closed conformations. Structural models of the voltage sensor of NaChBac were constructed based on the recently crystallized KvAP and Kv1.2 K(+) channels to visualize arginine residue accessibility. Our results suggest that arginine accessibility did not change significantly between the open and closed conformations, supporting the idea of a small movement of the S4 segment during gating. Molecular modeling of the closed conformation also supported a small movement of S4, which is mainly characterized by a rotation and a tilt along the periphery of the pore. Interestingly, the second arginine residue of the S4 segment (R114) was accessible to sulfhydryl reagents from both sides of the membrane in the closed conformation and, based on our model, seemed to be at the junction of the intracellular and extracellular water crevices.


Subject(s)
Arginine/genetics , Sodium Channels/physiology , Bacillus/genetics , Bacillus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Cell Line , Computer Simulation , Humans , Ion Channel Gating/genetics , Ion Channel Gating/physiology , Membrane Potentials/genetics , Membrane Potentials/physiology , Models, Molecular , Mutagenesis, Site-Directed , Patch-Clamp Techniques , Protein Structure, Secondary , Sodium Channels/chemistry , Sodium Channels/genetics , Transfection
8.
Biophys J ; 92(10): 3513-23, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17325004

ABSTRACT

The voltage-sensing domain of voltage-gated ion channels is characterized by specific, conserved, charged residues. Positively charged residues on segment S4 are the main contributors to voltage-sensing and negatively charged residues on the S2 and S3 segments are believed to participate to the process. However, their function in the voltage sensor is not well understood. To probe the role of three acidic residues in NaChBac (D-58 and E-68 in S2, and D-91 in S3), we employed site-directed mutagenesis to substitute native acidic residues with cysteine (neutral), lysine (positive charge), or either aspartate or glutamate (negative charge). We used a combination of the patch-clamp technique to record Na+ currents and molecular modeling to visualize interacting amino acid residues. We suggest that the acidic residues on the S2 and S3 segments form specific interactions with adjacent amino acids in the voltage-sensor domain. The main interactions in NaChBac are D-58 (S2) with A-97-G-98 (S3) and R-120 (S4), E-68 (S2) with R-129 (L4-5), and D-91 (S3) with R-72 (S2). Changing these acidic residues modified the interactions, which in turn altered the sensitivity of the voltage sensor.


Subject(s)
Amino Acids/chemistry , Amino Acids/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Ion Channel Gating/physiology , Models, Chemical , Sodium Channels/chemistry , Sodium Channels/physiology , Sodium/metabolism , Computer Simulation , Models, Biological , Models, Molecular , Protein Structure, Tertiary/physiology , Sodium/chemistry , Structure-Activity Relationship
10.
Protein Sci ; 15(5): 987-99, 2006 May.
Article in English | MEDLINE | ID: mdl-16641486

ABSTRACT

Androgens exert their effects by binding to the highly specific androgen receptor (AR). In addition to natural potent androgens, AR binds a variety of synthetic agonist or antagonist molecules with different affinities. To identify molecular determinants responsible for this selectivity, we have determined the crystal structure of the human androgen receptor ligand-binding domain (hARLBD) in complex with two natural androgens, testosterone (Testo) and dihydrotestosterone (DHT), and with an androgenic steroid used in sport doping, tetrahydrogestrinone (THG), at 1.64, 1.90, and 1.75 A resolution, respectively. Comparison of these structures first highlights the flexibility of several residues buried in the ligand-binding pocket that can accommodate a variety of ligand structures. As expected, the ligand structure itself (dimension, presence, and position of unsaturated bonds that influence the geometry of the steroidal nucleus or the electronic properties of the neighboring atoms, etc.) determines the number of interactions it can make with the hARLBD. Indeed, THG--which possesses the highest affinity--establishes more van der Waals contacts with the receptor than the other steroids, whereas the geometry of the atoms forming electrostatic interactions at both extremities of the steroid nucleus seems mainly responsible for the higher affinity measured experimentally for DHT over Testo. Moreover, estimation of the ligand-receptor interaction energy through modeling confirms that even minor modifications in ligand structure have a great impact on the strength of these interactions. Our crystallographic data combined with those obtained by modeling will be helpful in the design of novel molecules with stronger affinity for the AR.


Subject(s)
Androgen Antagonists/chemistry , Multiprotein Complexes , Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Androgen Antagonists/metabolism , Androgens , Binding Sites , Crystallization , Crystallography, X-Ray , Dihydrotestosterone/chemistry , Dihydrotestosterone/metabolism , Gestrinone/analogs & derivatives , Gestrinone/chemistry , Gestrinone/metabolism , Humans , Hydrogen Bonding , Ligands , Molecular Structure , Protein Binding , Protein Structure, Tertiary , Testosterone/chemistry , Testosterone/metabolism
11.
Biochemistry ; 44(19): 7218-27, 2005 May 17.
Article in English | MEDLINE | ID: mdl-15882060

ABSTRACT

Crystallographic studies of ligand-protein complexes reveal most preferable ligand binding modes, but do not show less populated modes that may contribute to measurable biochemical and biophysical characteristics of the complexes. In some cases, a ligand may bind a protein in essentially different modes. An example is 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), a steroidogenic enzyme that catalyzes reduction of estrone to estradiol in gonadal and peripheral tissues. The enzyme exhibits a high specificity for estrogens which bind with their C17 atom in the proximity of the NADP(H) cofactor. 17Beta-HSD1 can also bind androgens, but in a reverse binding mode, in which the steroid C3 atom is the closest carbon atom to the cofactor. Here we map the interaction energy of estradiol and dihydrotestosterone binding to 17beta-HSD1. Positions and orientations of the steroids in the ligand-binding tunnel were sampled systematically, and at each combination of these generalized coordinates, the energy was Monte Carlo minimized. The computed maps show energy minima corresponding to the X-ray structures and predict alternative binding modes, in particular, an upside-down orientation in which steroidal face alpha is exposed to protein residues that normally interact with face beta. The methodology can be used for mapping ligand-receptor interactions in various systems, for example, in ion channels and G-protein-coupled receptors that bind elongated ligands in confined space between transmembrane helices.


Subject(s)
17-Hydroxysteroid Dehydrogenases/chemistry , 17-Hydroxysteroid Dehydrogenases/metabolism , Computational Biology , Dihydrotestosterone/metabolism , Estradiol/metabolism , Monte Carlo Method , Thermodynamics , Amino Acid Sequence , Binding Sites , Computational Biology/methods , Computer Simulation , Crystallography, X-Ray , Dihydrotestosterone/chemistry , Estradiol/chemistry , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Peptide Mapping/methods , Software , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...