Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 19(12): e1011080, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38091369

ABSTRACT

Despite our increasing knowledge of molecular mechanisms guiding various aspects of human reproduction, those underlying human primordial germ cell (PGC) development remain largely unknown. Here, we conducted custom CRISPR screening in an in vitro system of human PGC-like cells (hPGCLCs) to identify genes required for acquisition and maintenance of PGC fate. Amongst our candidates, we identified TCL1A, an AKT coactivator. Functional assessment in our in vitro hPGCLCs system revealed that TCL1A played a critical role in later stages of hPGCLC development. Moreover, we found that TCL1A loss reduced AKT-mTOR signaling, downregulated expression of genes related to translational control, and subsequently led to a reduction in global protein synthesis and proliferation. Together, our study highlights the utility of CRISPR screening for human in vitro-derived germ cells and identifies novel translational regulators critical for hPGCLC development.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Proto-Oncogene Proteins c-akt , Humans , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Differentiation/genetics , Germ Cells/metabolism , Transcriptome
2.
Gut ; 72(12): 2294-2306, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37591698

ABSTRACT

OBJECTIVE: Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with the majority of cases initiated by inactivation of the APC tumour suppressor. This results in the constitutive activation of canonical WNT pathway transcriptional effector ß-catenin, along with induction of WNT feedback inhibitors, including the extracellular palmitoleoyl-protein carboxylesterase NOTUM which antagonises WNT-FZD receptor-ligand interactions. Here, we sought to evaluate the effects of NOTUM activity on CRC as a function of driver mutation landscape. DESIGN: Mouse and human colon organoids engineered with combinations of CRC driver mutations were used for Notum genetic gain-of-function and loss-of-function studies. In vitro assays, in vivo endoscope-guided orthotopic organoid implantation assays and transcriptomic profiling were employed to characterise the effects of Notum activity. Small molecule inhibitors of Notum activity were used in preclinical therapeutic proof-of-principle studies targeting oncogenic Notum activity. RESULTS: NOTUM retains tumour suppressive activity in APC-null adenomas despite constitutive ß-catenin activity. Strikingly, on progression to adenocarcinoma with P53 loss, NOTUM becomes an obligate oncogene. These phenotypes are Wnt-independent, resulting from differential activity of NOTUM on glypican 1 and 4 in early-stage versus late-stage disease, respectively. Ultimately, preclinical mouse models and human organoid cultures demonstrate that pharmacological inhibition of NOTUM is highly effective in arresting primary adenocarcinoma growth and inhibiting metastatic colonisation of distal organs. CONCLUSIONS: Our findings that a single agent targeting the extracellular enzyme NOTUM is effective in treating highly aggressive, metastatic adenocarcinomas in preclinical mouse models and human organoids make NOTUM and its glypican targets therapeutic vulnerabilities in advanced CRC.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Humans , Mice , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Wnt Signaling Pathway/genetics , Catenins/genetics , Catenins/metabolism , Catenins/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics
3.
Cancer Immunol Res ; 10(12): 1490-1505, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36255418

ABSTRACT

Fragility of regulatory T (Treg) cells manifested by the loss of neuropilin-1 (NRP1) and expression of IFNγ undermines the immune suppressive functions of Treg cells and contributes to the success of immune therapies against cancers. Intratumoral Treg cells somehow avoid fragility; however, the mechanisms by which Treg cells are protected from fragility in the tumor microenvironment are not well understood. Here, we demonstrate that the IFNAR1 chain of the type I IFN (IFN1) receptor was downregulated on intratumoral Treg cells. Downregulation of IFNAR1 mediated by p38α kinase protected Treg cells from fragility and maintained NRP1 levels, which were decreased in response to IFN1. Genetic or pharmacologic inactivation of p38α and stabilization of IFNAR1 in Treg cells induced fragility and inhibited their immune suppressive and protumorigenic activities. The inhibitor of sumoylation TAK981 (Subasumstat) upregulated IFNAR1, eliciting Treg fragility and inhibiting tumor growth in an IFNAR1-dependent manner. These findings describe a mechanism by which intratumoral Treg cells retain immunosuppressive activities and suggest therapeutic approaches for inducing Treg fragility and increasing the efficacy of immunotherapies.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , Tumor Microenvironment , Neuropilin-1 , Immunotherapy
4.
Nat Commun ; 13(1): 2350, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35487911

ABSTRACT

Cell fate commitment is driven by dynamic changes in chromatin architecture and activity of lineage-specific transcription factors (TFs). The chromatin assembly factor-1 (CAF-1) is a histone chaperone that regulates chromatin architecture by facilitating nucleosome assembly during DNA replication. Accumulating evidence supports a substantial role of CAF-1 in cell fate maintenance, but the mechanisms by which CAF-1 restricts lineage choice remain poorly understood. Here, we investigate how CAF-1 influences chromatin dynamics and TF activity during lineage differentiation. We show that CAF-1 suppression triggers rapid differentiation of myeloid stem and progenitor cells into a mixed lineage state. We find that CAF-1 sustains lineage fidelity by controlling chromatin accessibility at specific loci, and limiting the binding of ELF1 TF at newly-accessible diverging regulatory elements. Together, our findings decipher key traits of chromatin accessibility that sustain lineage integrity and point to a powerful strategy for dissecting transcriptional circuits central to cell fate commitment.


Subject(s)
Chromatin , Histone Chaperones , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Chromosomes/metabolism , Histone Chaperones/metabolism , Histones/metabolism
5.
Cancer Discov ; 12(3): 792-811, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34853079

ABSTRACT

Epigenetic programs are dysregulated in acute myeloid leukemia (AML) and help enforce an oncogenic state of differentiation arrest. To identify key epigenetic regulators of AML cell fate, we performed a differentiation-focused CRISPR screen in AML cells. This screen identified the histone acetyltransferase KAT6A as a novel regulator of myeloid differentiation that drives critical leukemogenic gene-expression programs. We show that KAT6A is the initiator of a newly described transcriptional control module in which KAT6A-catalyzed promoter H3K9ac is bound by the acetyl-lysine reader ENL, which in turn cooperates with a network of chromatin factors to induce transcriptional elongation. Inhibition of KAT6A has strong anti-AML phenotypes in vitro and in vivo, suggesting that KAT6A small-molecule inhibitors could be of high therapeutic interest for mono-therapy or combinatorial differentiation-based treatment of AML. SIGNIFICANCE: AML is a poor-prognosis disease characterized by differentiation blockade. Through a cell-fate CRISPR screen, we identified KAT6A as a novel regulator of AML cell differentiation. Mechanistically, KAT6A cooperates with ENL in a "writer-reader" epigenetic transcriptional control module. These results uncover a new epigenetic dependency and therapeutic opportunity in AML. This article is highlighted in the In This Issue feature, p. 587.


Subject(s)
Leukemia, Myeloid, Acute , Oncogenes , Chromatin/genetics , Epigenesis, Genetic , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Neoplasm Proteins , Nuclear Proteins , Transcription Factors
6.
Cell Rep ; 37(6): 109967, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758323

ABSTRACT

Stem and progenitor cells have the capacity to balance self-renewal and differentiation. Hematopoietic myeloid progenitors replenish more than 25 billion terminally differentiated neutrophils every day under homeostatic conditions and can increase this output in response to stress or infection. At what point along the spectrum of maturation do progenitors lose capacity for self-renewal and become irreversibly committed to differentiation? Using a system of conditional myeloid development that can be toggled between self-renewal and differentiation, we interrogate determinants of this "point of no return" in differentiation commitment. Irreversible commitment is due primarily to loss of open regulatory site access and disruption of a positive feedback transcription factor activation loop. Restoration of the transcription factor feedback loop extends the window of cell plasticity and alters the point of no return. These findings demonstrate how the chromatin state enforces and perpetuates cell fate and identify potential avenues for manipulating cell identity.


Subject(s)
Bone Marrow/physiology , Cell Lineage , Chromatin/genetics , Hematopoiesis , Hematopoietic Stem Cells/cytology , Myeloid Cells/cytology , Transcription Factors/metabolism , Animals , Cell Differentiation , Cells, Cultured , Chromatin/metabolism , Female , Gene Expression Profiling , Mice , Transcription Factors/genetics
7.
iScience ; 24(6): 102651, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34151238

ABSTRACT

A hallmark of acute myeloid leukemia (AML) is the inability of self-renewing malignant cells to mature into a non-dividing terminally differentiated state. This differentiation block has been linked to dysregulation of multiple cellular processes, including transcriptional, chromatin, and metabolic regulation. The transcription factor HOXA9 and the histone demethylase LSD1 are examples of such regulators that promote differentiation blockade in AML. To identify metabolic targets that interact with LSD1 inhibition to promote myeloid maturation, we screened a small molecule library to identify druggable substrates. We found that differentiation caused by LSD1 inhibition is enhanced by combined perturbation of purine nucleotide salvage and de novo lipogenesis pathways, and identified multiple lines of evidence to support the specificity of these pathways and suggest a potential basis of how perturbation of these pathways may interact synergistically to promote myeloid differentiation. In sum, these findings suggest potential drug combination strategies in the treatment of AML.

8.
Brain ; 144(6): 1670-1683, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33723591

ABSTRACT

The concerted actions of the CNS and the immune system are essential to coordinating the outcome of neuroinflammatory responses. Yet, the precise mechanisms involved in this crosstalk and their contribution to the pathophysiology of neuroinflammatory diseases largely elude us. Here, we show that the CNS-endogenous hedgehog pathway, a signal triggered as part of the host response during the inflammatory phase of multiple sclerosis and experimental autoimmune encephalomyelitis, attenuates the pathogenicity of human and mouse effector CD4 T cells by regulating their production of inflammatory cytokines. Using a murine genetic model, in which the hedgehog signalling is compromised in CD4 T cells, we show that the hedgehog pathway acts on CD4 T cells to suppress the pathogenic hallmarks of autoimmune neuroinflammation, including demyelination and axonal damage, and thus mitigates the development of experimental autoimmune encephalomyelitis. Impairment of hedgehog signalling in CD4 T cells exacerbates brain-brainstem-cerebellum inflammation and leads to the development of atypical disease. Moreover, we present evidence that hedgehog signalling regulates the pathogenic profile of CD4 T cells by limiting their production of the inflammatory cytokines granulocyte-macrophage colony-stimulating factor and interferon-γ and by antagonizing their inflammatory program at the transcriptome level. Likewise, hedgehog signalling attenuates the inflammatory phenotype of human CD4 memory T cells. From a therapeutic point of view, our study underlines the potential of harnessing the hedgehog pathway to counteract ongoing excessive CNS inflammation, as systemic administration of a hedgehog agonist after disease onset effectively halts disease progression and significantly reduces neuroinflammation and the underlying neuropathology. We thus unveil a previously unrecognized role for the hedgehog pathway in regulating pathogenic inflammation within the CNS and propose to exploit its ability to modulate this neuroimmune network as a strategy to limit the progression of ongoing neuroinflammation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Hedgehog Proteins/immunology , Inflammation/immunology , Animals , Brain/immunology , Brain/pathology , CD4-Positive T-Lymphocytes/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Hedgehog Proteins/metabolism , Humans , Inflammation/metabolism , Mice , Spinal Cord/immunology , Spinal Cord/pathology
9.
Front Oncol ; 9: 432, 2019.
Article in English | MEDLINE | ID: mdl-31192132

ABSTRACT

Acute myeloid leukemia (AML) is one of the most lethal blood cancers, accounting for close to a quarter of a million annual deaths worldwide. Even though genetically heterogeneous, all AMLs are characterized by two interrelated features-blocked differentiation and high proliferative capacity. Despite significant progress in our understanding of the molecular and genetic basis of AML, the treatment of AMLs with chemotherapeutic regimens has remained largely unchanged in the past 30 years. In this review, we will consider the role of two cellular processes, metabolism and epigenetics, in the development and progression of AML and highlight the studies that suggest an interconnection of therapeutic importance between the two. Large-scale whole-exome sequencing of AML patients has revealed the presence of mutations, translocations or duplications in several epigenetic effectors such as DNMT3, MLL, ASXL1, and TET2, often times co-occuring with mutations in metabolic enzymes such as IDH1 and IDH2. These mutations often result in impaired enzymatic activity which leads to an altered epigenetic landscape through dysregulation of chromatin modifications such as DNA methylation, histone acetylation and methylation. We will discuss the role of enzymes that are responsible for establishing these modifications, namely histone acetyl transferases (HAT), histone methyl transferases (HMT), demethylases (KDMs), and deacetylases (HDAC), and also highlight the merits and demerits of using inhibitors that target these enzymes. Furthermore, we will tie in the metabolic regulation of co-factors such as acetyl-CoA, SAM, and α-ketoglutarate that are utilized by these enzymes and examine the role of metabolic inhibitors as a treatment option for AML. In doing so, we hope to stimulate interest in this topic and help generate a rationale for the consideration of the combinatorial use of metabolic and epigenetic inhibitors for the treatment of AML.

10.
Epigenetics Chromatin ; 6(1): 20, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23826629

ABSTRACT

BACKGROUND: An integral component of cancer biology is the understanding of molecular properties uniquely distinguishing one cancer type from another. One class of such properties is histone post-translational modifications (PTMs). Many histone PTMs are linked to the same diverse nuclear functions implicated in cancer development, including transcriptional activation and epigenetic regulation, which are often indirectly assayed with standard genomic technologies. Thus, there is a need for a comprehensive and quantitative profiling of cancer lines focused on their chromatin modification states. RESULTS: To complement genomic expression profiles of cancer lines, we report the proteomic classification of 24 different lines, the majority of which are cancer cells, by quantifying the abundances of a large panel of single and combinatorial histone H3 and H4 PTMs, and histone variants. Concurrent to the proteomic analysis, we performed transcriptomic analysis on histone modifying enzyme abundances as a proxy for quantifying their activity levels. While the transcriptomic and proteomic results were generally consistent in terms of predicting histone PTM abundance from enzyme abundances, several PTMs were regulated independently of the modifying enzyme expression. In addition, combinatorial PTMs containing H3K27 methylation were especially enriched in breast cell lines. Knockdown of the predominant H3K27 methyltransferase, enhancer of zeste 2 (EZH2), in a mouse mammary xenograft model significantly reduced tumor burden in these animals and demonstrated the predictive utility of proteomic techniques. CONCLUSIONS: Our proteomic and genomic characterizations of the histone modification states provide a resource for future investigations of the epigenetic and non-epigenetic determinants for classifying and analyzing cancer cells.

11.
Mech Ageing Dev ; 126(6-7): 794-803, 2005.
Article in English | MEDLINE | ID: mdl-15888334

ABSTRACT

Evolutionary hypotheses of aging predict that species with low rates of mortality from extrinsic sources, such as predation, should senesce more slowly and have longer maximum life spans than related species with higher rates of extrinsic mortality. We tested this prediction by synthesizing information on maximum body lengths and life spans in captivity of 1193 species of chemically protected (venomous or poisonous) and non-chemically protected fishes, snakes, caudatans (salamanders and newts), and anurans (frogs and toads). In every phylogenetic group maximum longevity was positively correlated with body size and, when size was controlled for statistically, chemically protected species and genera usually had longer maximum life spans than non-protected species. These results reemphasize the importance of life history traits, particularly protection from predation, in the evolution of senescence.


Subject(s)
Biological Evolution , Body Size/physiology , Longevity/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...