Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Nat Cancer ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741011

ABSTRACT

Cancer immunotherapy with chimeric antigen receptor (CAR) T cells can cause immune effector cell-associated neurotoxicity syndrome (ICANS). However, the molecular mechanisms leading to ICANS are not well understood. Here we examined the role of microglia using mouse models and cohorts of individuals with ICANS. CD19-directed CAR (CAR19) T cell transfer in B cell lymphoma-bearing mice caused microglia activation and neurocognitive deficits. The TGFß-activated kinase-1 (TAK1)-NF-κB-p38 MAPK pathway was activated in microglia after CAR19 T cell transfer. Pharmacological TAK1 inhibition or genetic Tak1 deletion in microglia using Cx3cr1CreER:Tak1fl/fl mice resulted in reduced microglia activation and improved neurocognitive activity. TAK1 inhibition allowed for potent CAR19-induced antilymphoma effects. Individuals with ICANS exhibited microglia activation in vivo when studied by translocator protein positron emission tomography, and imaging mass cytometry revealed a shift from resting to activated microglia. In summary, we prove a role for microglia in ICANS pathophysiology, identify the TAK1-NF-κB-p38 MAPK axis as a pathogenic signaling pathway and provide a rationale to test TAK1 inhibition in a clinical trial for ICANS prevention after CAR19 T cell-based cancer immunotherapy.

2.
J Occup Environ Med ; 65(10): 868-879, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37488771

ABSTRACT

OBJECTIVE: A more detailed understanding of unmet organizational support needs and workplace-based best practices for supporting cancer survivors is needed. METHODS: Ninety-four working breast cancer survivors responded to an open-ended survey question regarding the desired types of organizational support that were and were not received during early survivorship. We performed content-analysis of qualitative data. RESULTS: Major themes included instrumental support, emotional support, and time-based support. The need for flexible arrangements and reduced workloads was mostly met. Unmet needs included navigation/coordination, understanding/empathy, and time off for treatment and recovery. CONCLUSIONS: Organizational support can help cancer survivors manage their health and work roles, diminishing work-health conflict and turnover intent. Study findings can be used to design targeted interventions to fulfill cancer survivors' unmet organizational support needs, which may also apply to workers with other chronic health conditions.


Subject(s)
Breast Neoplasms , Cancer Survivors , Humans , Female , Breast Neoplasms/therapy , Cancer Survivors/psychology , Health Services Needs and Demand , Survivors/psychology , Surveys and Questionnaires
3.
Nat Commun ; 14(1): 2721, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169749

ABSTRACT

While the precise processes underlying a sex bias in the development of central nervous system (CNS) disorders are unknown, there is growing evidence that an early life immune activation can contribute to the disease pathogenesis. When we mimicked an early systemic viral infection or applied murine cytomegalovirus (MCMV) systemically in neonatal female and male mice, only male adolescent mice presented behavioral deficits, including reduced social behavior and cognition. This was paralleled by an increased amount of infiltrating T cells in the brain parenchyma, enhanced interferon-γ (IFNγ) signaling, and epigenetic reprogramming of microglial cells. These microglial cells showed increased phagocytic activity, which resulted in abnormal loss of excitatory synapses within the hippocampal brain region. None of these alterations were seen in female adolescent mice. Our findings underscore the early postnatal period's susceptibility to cause sex-dependent long-term CNS deficiencies following infections.


Subject(s)
Central Nervous System Diseases , Microglia , Animals , Female , Male , Mice , Microglia/pathology , Brain , Central Nervous System Diseases/pathology , Interferon-gamma/genetics , Epigenesis, Genetic
5.
Front Cell Neurosci ; 16: 944526, 2022.
Article in English | MEDLINE | ID: mdl-36072564

ABSTRACT

In recent years, development of age-related diseases, such as Alzheimer's and Parkinson's disease, as well as other brain disorders, including anxiety, depression, and schizophrenia have been shown to be associated with changes in the gut microbiome. Several factors can induce an alteration in the bacterial composition of the host's gastrointestinal tract. Besides dietary changes and frequent use of antibiotics, the microbiome is also profoundly affected by aging. Levels of microbiota-derived metabolites are elevated in older individuals with age-associated diseases and cognitive defects compared to younger, healthy age groups. The identified metabolites with higher concentration in aged hosts, which include choline and trimethylamine, are known risk factors for age-related diseases. While the underlying mechanisms and pathways remain elusive for the most part, it has been shown, that these metabolites are able to trigger the innate immunity in the central nervous system by influencing development and activation status of brain-resident macrophages. The macrophages residing in the brain comprise parenchymal microglia and non-parenchymal macrophages located in the perivascular spaces, meninges, and the choroid plexus. In this review, we highlight the impact of age on the composition of the microbiome and microbiota-derived metabolites and their influence on age-associated diseases caused by dysfunctional brain-resident macrophages.

6.
Depress Anxiety ; 39(5): 387-396, 2022 05.
Article in English | MEDLINE | ID: mdl-35421280

ABSTRACT

BACKGROUND: Early-onset (EO) major depressive disorder (MDD) patients experience more depressive episodes and an increased risk of relapse. Thus, on a neurobiological level, adult EO patients might display brain structure and function different from adult-onset (AO) patients. METHODS: A total of 103 patients (66 females) underwent magnetic resonance imaging. Structural measures of gray matter volume (GMV) and functional connectivity networks during resting state were compared between EO (≤19 years) and AO groups. Four residual major depression symptoms, mood, anxiety, insomnia, and somatic symptoms, were correlated with GMV between groups. RESULTS: We found comparatively increased GMV in the EO group, namely the medial prefrontal and insular cortex, as well as the anterior hippocampus. Functional networks in EO patients showed a comparatively weaker synchronization of the left hippocampus with the adjacent amygdala, and a stronger integration with nodes in the contralateral prefrontal cortex and supramarginal gyrus. Volumetric analysis of depression symptoms associated the caudate nuclei with symptoms of insomnia, and persisting mood symptoms with the right amygdala, while finding no significant clusters for somatic and anxiety symptoms. CONCLUSIONS: The study highlights the important role of the hippocampus and the prefrontal cortex in EO patients as part of emotion-regulation networks. Results in EO patients demonstrated subcortical volume changes irrespective of sleep and mood symptom recovery, which substantiates adolescence as a pivotal developmental phase for MDD. Longitudinal studies are needed to differentiate neural recovery trajectories while accounting for age of onset.


Subject(s)
Depressive Disorder, Major , Sleep Initiation and Maintenance Disorders , Adolescent , Adult , Brain , Female , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Male
7.
Nat Neurosci ; 25(3): 295-305, 2022 03.
Article in English | MEDLINE | ID: mdl-35241804

ABSTRACT

Microglial function declines during aging. The interaction of microglia with the gut microbiota has been well characterized during development and adulthood but not in aging. Here, we compared microglial transcriptomes from young-adult and aged mice housed under germ-free and specific pathogen-free conditions and found that the microbiota influenced aging associated-changes in microglial gene expression. The absence of gut microbiota diminished oxidative stress and ameliorated mitochondrial dysfunction in microglia from the brains of aged mice. Unbiased metabolomic analyses of serum and brain tissue revealed the accumulation of N6-carboxymethyllysine (CML) in the microglia of the aging brain. CML mediated a burst of reactive oxygen species and impeded mitochondrial activity and ATP reservoirs in microglia. We validated the age-dependent rise in CML levels in the sera and brains of humans. Finally, a microbiota-dependent increase in intestinal permeability in aged mice mediated the elevated levels of CML. This study adds insight into how specific features of microglia from aged mice are regulated by the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Microglia , Animals , Lysine/analogs & derivatives , Lysine/metabolism , Mice , Microglia/metabolism , Oxidative Stress
8.
STAR Protoc ; 3(1): 101186, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35243376

ABSTRACT

Most of the protocols to analyze metabolic features of cell populations from different tissues rely on in vitro cell culture conditions. Here, we present a flow-cytometry-based protocol for measuring the respiratory chain function in permeabilized mouse microglia ex vivo. We describe microglial cell isolation, followed by analyzing complex I and II using flow cytometry. This optimized protocol requires a low input of permeabilized cells and can be applied to other ex vivo isolated cells or cells derived from cell cultures. For complete details on the use and execution of this protocol, please refer to Erny et al. (2021).


Subject(s)
Cell Culture Techniques , Microglia , Animals , Cell Separation/methods , Electron Transport , Flow Cytometry/methods , Mice
9.
Cell Metab ; 33(11): 2260-2276.e7, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731656

ABSTRACT

As tissue macrophages of the central nervous system (CNS), microglia constitute the pivotal immune cells of this organ. Microglial features are strongly dependent on environmental cues such as commensal microbiota. Gut bacteria are known to continuously modulate microglia maturation and function by the production of short-chain fatty acids (SCFAs). However, the precise mechanism of this crosstalk is unknown. Here we determined that the immature phenotype of microglia from germ-free (GF) mice is epigenetically imprinted by H3K4me3 and H3K9ac on metabolic genes associated with substantial functional alterations including increased mitochondrial mass and specific respiratory chain dysfunctions. We identified acetate as the essential microbiome-derived SCFA driving microglia maturation and regulating the homeostatic metabolic state, and further showed that it is able to modulate microglial phagocytosis and disease progression during neurodegeneration. These findings indicate that acetate is an essential bacteria-derived molecule driving metabolic pathways and functions of microglia during health and perturbation.


Subject(s)
Microbiota , Acetates/pharmacology , Animals , Brain/metabolism , Fatty Acids, Volatile/metabolism , Immune System/metabolism , Mice , Microbiota/physiology
10.
EMBO J ; 40(23): e108605, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34622466

ABSTRACT

The immune cells of the central nervous system (CNS) comprise parenchymal microglia and at the CNS border regions meningeal, perivascular, and choroid plexus macrophages (collectively called CNS-associated macrophages, CAMs). While previous work has shown that microglial properties depend on environmental signals from the commensal microbiota, the effects of microbiota on CAMs are unknown. By combining several microbiota manipulation approaches, genetic mouse models, and single-cell RNA-sequencing, we have characterized CNS myeloid cell composition and function. Under steady-state conditions, the transcriptional profiles and numbers of choroid plexus macrophages were found to be tightly regulated by complex microbiota. In contrast, perivascular and meningeal macrophages were affected to a lesser extent. An acute perturbation through viral infection evoked an attenuated immune response of all CAMs in germ-free mice. We further assessed CAMs in a more chronic pathological state in 5xFAD mice, a model for Alzheimer's disease, and found enhanced amyloid beta uptake exclusively by perivascular macrophages in germ-free 5xFAD mice. Our results aid the understanding of distinct microbiota-CNS macrophage interactions during homeostasis and disease, which could potentially be targeted therapeutically.


Subject(s)
Alzheimer Disease/immunology , Bacteria/growth & development , Central Nervous System/immunology , Homeostasis , Macrophages/immunology , Myeloid Cells/immunology , Alzheimer Disease/genetics , Alzheimer Disease/microbiology , Alzheimer Disease/pathology , Animals , Bacteria/classification , Bacteria/metabolism , Central Nervous System/metabolism , Central Nervous System/microbiology , Central Nervous System/pathology , Female , Macrophages/metabolism , Macrophages/microbiology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Microbiota , Myeloid Cells/metabolism , Myeloid Cells/microbiology , Myeloid Cells/pathology , Transcriptome
11.
Front Cell Neurosci ; 15: 698126, 2021.
Article in English | MEDLINE | ID: mdl-34295223

ABSTRACT

The immune system is crucial for defending against various invaders, such as pathogens, cancer cells or misfolded proteins. With increasing age, the diminishing immune response, known as immunosenescence, becomes evident. Concomitantly, some diseases like infections, autoimmune diseases, chronic inflammatory diseases and cancer, accumulate with age. Different cell types are part of the innate immunity response and produce soluble factors, cytokines, chemokines, and type I interferons. Improper maturation of innate immune cells or their dysfunction have been linked to numerous age-related diseases. In parallel to the occurrence of the many functional facets of the immune response, a symbiotic microbiota had been acquired. For the relevant and situation-dependent function of the immune system the microbiome plays an essential role because it fine-tunes the immune system and its responses during life. Nevertheless, how the age-related alterations in the microbiota are reflected in the innate immune system, is still poorly understood. With this review, we provide an up-to-date overview on our present understanding of the gut microbiota effects on innate immunity, with a particular emphasis on aging-associated changes in the gut microbiota and the implications for the brain innate immune response.

12.
Immunity ; 54(7): 1594-1610.e11, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34174183

ABSTRACT

COVID-19 can cause severe neurological symptoms, but the underlying pathophysiological mechanisms are unclear. Here, we interrogated the brain stems and olfactory bulbs in postmortem patients who had COVID-19 using imaging mass cytometry to understand the local immune response at a spatially resolved, high-dimensional, single-cell level and compared their immune map to non-COVID respiratory failure, multiple sclerosis, and control patients. We observed substantial immune activation in the central nervous system with pronounced neuropathology (astrocytosis, axonal damage, and blood-brain-barrier leakage) and detected viral antigen in ACE2-receptor-positive cells enriched in the vascular compartment. Microglial nodules and the perivascular compartment represented COVID-19-specific, microanatomic-immune niches with context-specific cellular interactions enriched for activated CD8+ T cells. Altered brain T-cell-microglial interactions were linked to clinical measures of systemic inflammation and disturbed hemostasis. This study identifies profound neuroinflammation with activation of innate and adaptive immune cells as correlates of COVID-19 neuropathology, with implications for potential therapeutic strategies.


Subject(s)
Brain/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Microglia/immunology , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/metabolism , Brain/pathology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/pathology , Cell Communication , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Immune Checkpoint Proteins/metabolism , Inflammation , Lymphocyte Activation , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Olfactory Bulb/immunology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Respiratory Insufficiency/immunology , Respiratory Insufficiency/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
13.
J Cancer Surviv ; 15(6): 890-905, 2021 12.
Article in English | MEDLINE | ID: mdl-33405056

ABSTRACT

PURPOSE: A substantial portion of breast cancer survivors are active in the workforce, yet factors that allow survivors to balance work with cancer management and to return to work are poorly understood. We examined breast cancer survivors' most valued/desired types of support in early survivorship. METHODS: Seventy-six employed breast cancer survivors answered an open-ended survey question assessing the most valued/desired support to receive from healthcare providers during early survivorship to manage work and health. Cutrona's (Journal of Social and Clinical Psychology 9:3-14, 1990) optimal matching theory and House's (1981) conceptualization of social support types informed our analyses. Data were content-analyzed to identify themes related to support, whether needed support was received or not, and the types of healthcare providers who provided support. RESULTS: We identified six themes related to types of support. Informational support was valued and mostly received by survivors, but they expected more guidance related to work. Emotional support was valued but lacking, attributed mainly to providers' lack of personal connection and mental health support. Instrumental (practical) support was valued but received by a small number of participants. Quality of life support to promote well-being and functionality was valued and often received. Other themes included non-specific support and non-support. CONCLUSIONS: This study expands our understanding of how breast cancer survivors perceive work-related support from healthcare professionals. Findings will inform targeted interventions designed to improve the support provided by healthcare professionals. IMPLICATIONS FOR CANCER SURVIVORS: Breast cancer survivors managing work and health challenges may benefit by having their unmet support needs fulfilled.


Subject(s)
Breast Neoplasms , Cancer Survivors , Breast Neoplasms/therapy , Female , Humans , Qualitative Research , Quality of Life , Social Support , Survivors
14.
Nat Aging ; 1(12): 1127-1136, 2021 12.
Article in English | MEDLINE | ID: mdl-37117525

ABSTRACT

Understanding the physiological origins of age-related cognitive decline is of critical importance given the rising age of the world's population1. Previous work in animal models has established a strong link between cognitive performance and the microbiota2-5, and it is known that the microbiome undergoes profound remodeling in older adults6. Despite growing evidence for the association between age-related cognitive decline and changes in the gut microbiome, the mechanisms underlying such interactions between the brain and the gut are poorly understood. Here, using fecal microbiota transplantation (FMT), we demonstrate that age-related remodeling of the gut microbiota leads to decline in cognitive function in mice and that this impairment can be rescued by transplantation of microbiota from young animals. Moreover, using a metabolomic approach, we found elevated concentrations of δ-valerobetaine, a gut microbiota-derived metabolite, in the blood and brain of aged mice and older adults. We then demonstrated that δ-valerobetaine is deleterious to learning and memory processes in mice. At the neuronal level, we showed that δ-valerobetaine modulates inhibitory synaptic transmission and neuronal network activity. Finally, we identified specific bacterial taxa that significantly correlate with δ-valerobetaine levels in the brain. Based on our findings, we propose that δ-valerobetaine contributes to microbiota-driven brain aging and that the associated mechanisms represent a promising target for countering age-related cognitive decline.


Subject(s)
Cognitive Dysfunction , Gastrointestinal Microbiome , Microbiota , Animals , Mice , Microbiota/physiology , Gastrointestinal Microbiome/physiology , Cognition/physiology , Cognitive Dysfunction/metabolism , Brain/metabolism
15.
Depress Anxiety ; 38(4): 447-455, 2021 04.
Article in English | MEDLINE | ID: mdl-33131185

ABSTRACT

BACKGROUND: Serious long term health and economic detriment accompany residual depressive symptoms even in fully remitted depressed patients (rMDD). Neurobiological predictors for rMDD patients' illness trajectory are absent. METHODS: rMDD patients (n = 39, female = 26) underwent magnetic resonance imaging. Baseline analyses of brain structure via voxel-based morphometry and brain function via functional connectivity (FC) at rest were correlated with changes in the Hamilton Depression Rating Scale between baseline and follow-up, and incidence of a recurrent major depressive episode (MDE) within a 2-year period. RESULTS: Gray matter increases in default mode (DN) regions in the posterior cingulate cortex (PCC) and increased resting-state FC within the DN both predicted change of depressive symptoms. Patients with recurrent MDE had larger bilateral nucleus accumbens and left insula volumes. Post hoc exploratory analysis of nucleus accumbens and insula conceptualized as part of the brain's reward circuit demonstrated reduced connectivity in patients with recurrent MDE. CONCLUSIONS: Higher DN connectivity and PCC volume coinciding with a more favorable course of symptoms suggest neural mechanisms of self-recovery beyond the phase of active medical treatment. Alterations in the brain's reward circuit might be a starting point for designing maintenance treatments that prevent recurrent MDEs in rMDD patients.


Subject(s)
Depressive Disorder, Major , Brain/diagnostic imaging , Brain Mapping , Depressive Disorder, Major/diagnostic imaging , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Neural Pathways
16.
PLoS One ; 15(9): e0236878, 2020.
Article in English | MEDLINE | ID: mdl-32870907

ABSTRACT

The widespread legalization of Cannabis has opened the industry to using contemporary analytical techniques for chemotype analysis. Chemotypic data has been collected on a large variety of oil profiles inherent to the cultivars that are commercially available. The unknown gene regulation and pharmacokinetics of dozens of cannabinoids offer opportunities of high interest in pharmacology research. Retailers in many medical and recreational jurisdictions are typically required to report chemical concentrations of at least some cannabinoids. Commercial cannabis laboratories have collected large chemotype datasets of diverse Cannabis cultivars. In this work a data set of 17,600 cultivars tested by Steep Hill Inc., is examined using machine learning techniques to interpolate missing chemotype observations and cluster cultivars into groups based on chemotype similarity. The results indicate cultivars cluster based on their chemotypes, and that some imputation methods work better than others at grouping these cultivars based on chemotypic identity. Due to the missing data and to the low signal to noise ratio for some less common cannabinoids, their behavior could not be accurately predicted. These findings have implications for characterizing complex interactions in cannabinoid biosynthesis and improving phenotypical classification of Cannabis cultivars.


Subject(s)
Cannabinoids/analysis , Cannabis/chemistry , Plant Extracts/chemistry , Cannabis/classification , Databases, Chemical
17.
Compr Psychiatry ; 102: 152196, 2020 10.
Article in English | MEDLINE | ID: mdl-32927367

ABSTRACT

INTRODUCTION: Unipolar depression is a common and debilitating disorder. Immunological explanatory approaches have become increasingly important in recent years and can be studied particularly well in the cerebrospinal fluid (CSF). Previous studies discerned alterations in interleukin (IL)-6 and IL-8 levels; however, findings regarding IL-8 were partly contradictory. The aim of the present study was to investigate the concentrations of different cytokines and chemokines, focusing on IL-8, in the CSF of patients with unipolar depression. MATERIALS AND METHODS: Participants included 40 patients with unipolar depression and 39 mentally healthy controls with idiopathic intracranial hypertension. CSF cytokine levels were measured using a magnetic bead multiplexing immunoassay. RESULTS: IL-8 levels in the CSF of the patient group with depression were significantly higher than those in the control group (Mean ± SD: 38.44 ± 6.26 pg/ml versus 21.40 ± 7.96 pg/ml; p < .001). LIMITATIONS: The significance of the results is limited by the retrospective design and methodological aspects. DISCUSSION: The main findings of this study were significantly higher concentrations of IL-8 in the CSF of patients with unipolar depression than in the control group. The detection of high CSF IL-8 levels in this study supports the idea that inflammatory processes might play a role in the pathophysiology of a subgroup of patients with depression.


Subject(s)
Depressive Disorder , Interleukin-8 , Chemokines , Cytokines , Depressive Disorder/diagnosis , Humans , Retrospective Studies
18.
Acta Neuropathol Commun ; 8(1): 119, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32727612

ABSTRACT

It was recently revealed that gut microbiota promote amyloid-beta (Aß) burden in mouse models of Alzheimer's disease (AD). However, the underlying mechanisms when using either germ-free (GF) housing conditions or treatments with antibiotics (ABX) remained unknown. In this study, we show that GF and ABX-treated 5x familial AD (5xFAD) mice developed attenuated hippocampal Aß pathology and associated neuronal loss, and thereby delayed disease-related memory deficits. While Aß production remained unaffected in both GF and ABX-treated 5xFAD mice, we noticed in GF 5xFAD mice enhanced microglial Aß uptake at early stages of the disease compared to ABX-treated 5xFAD mice. Furthermore, RNA-sequencing of hippocampal microglia from SPF, GF and ABX-treated 5xFAD mice revealed distinct microbiota-dependent gene expression profiles associated with phagocytosis and altered microglial activation states. Taken together, we observed that constitutive or induced microbiota modulation in 5xFAD mice differentially controls microglial Aß clearance mechanisms preventing neurodegeneration and cognitive deficits.


Subject(s)
Alzheimer Disease/pathology , Gastrointestinal Microbiome/physiology , Hippocampus/pathology , Microglia/metabolism , Alzheimer Disease/microbiology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Germ-Free Life , Humans , Male , Mice
19.
Brain Sci ; 10(6)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521749

ABSTRACT

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by difficulties with social interaction, repetitive behavior, and additional features, such as special interests. Its precise etiology is unclear. Recently, immunological mechanisms, such as maternal autoantibodies/infections, have increasingly been the subject of discussion. Cerebrospinal fluid (CSF) investigations play a decisive role in the detection of immunological processes in the brain. This study therefore retrospectively analyzed the CSF findings of adult patients with ASD. CSF basic measures (white blood cell count, total protein, albumin quotient, immunoglobulin G (IgG) index, and oligoclonal bands) and various antineuronal antibody findings of 36 adult patients with ASD, who had received lumbar puncture, were compared with an earlier described mentally healthy control group of 39 patients with idiopathic intracranial hypertension. CSF protein concentrations and albumin quotients of patients with ASD were significantly higher as compared to controls (age corrected: p = 0.003 and p = 0.004, respectively); 17% of the patients with ASD showed increased albumin quotients. After correction for age and gender, the group effect for total protein remained significant (p = 0.041) and showed a tendency for albumin quotient (p = 0.079). In the CSF of two ASD patients, an intrathecal synthesis of anti-glutamate decarboxylase 65 (GAD65) antibodies was found. In total, more of the ASD patients (44%) presented abnormal findings in CSF basic diagnostics compared to controls (18%; p = 0.013). A subgroup of the patients with adult ASD showed indication of a blood-brain barrier dysfunction, and two patients displayed an intrathecal synthesis of anti-GAD65 antibodies; thus, the role of these antibodies in patients with ASD should be further investigated. The results of the study are limited by its retrospective and open design. The group differences in blood-brain barrier markers could be influenced by a different gender distribution between ASD patients and controls.

20.
Nat Cell Biol ; 22(7): 828-841, 2020 07.
Article in English | MEDLINE | ID: mdl-32541879

ABSTRACT

Mutations in chromatin-modifying complexes and metabolic enzymes commonly underlie complex human developmental syndromes affecting multiple organs. A major challenge is to determine how disease-causing genetic lesions cause deregulation of homeostasis in unique cell types. Here we show that neural-specific depletion of three members of the non-specific lethal (NSL) chromatin complex-Mof, Kansl2 or Kansl3-unexpectedly leads to severe vascular defects and brain haemorrhaging. Deregulation of the epigenetic landscape induced by the loss of the NSL complex in neural cells causes widespread metabolic defects, including an accumulation of free long-chain fatty acids (LCFAs). Free LCFAs induce a Toll-like receptor 4 (TLR4)-NFκB-dependent pro-inflammatory signalling cascade in neighbouring vascular pericytes that is rescued by TLR4 inhibition. Pericytes display functional changes in response to LCFA-induced activation that result in vascular breakdown. Our work establishes that neurovascular function is determined by the neural metabolic environment.


Subject(s)
Cell Nucleus/pathology , Chromatin/metabolism , Histone Acetyltransferases/physiology , Inflammation/pathology , Neovascularization, Pathologic/pathology , Neurons/pathology , Pericytes/pathology , Animals , Brain/cytology , Brain/metabolism , Cell Nucleus/metabolism , Chromatin/genetics , Fatty Acids/metabolism , Female , Fetus/cytology , Fetus/metabolism , Humans , Inflammation/metabolism , Male , Metabolome , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/metabolism , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pericytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...