Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Front Neurosci ; 18: 1389651, 2024.
Article in English | MEDLINE | ID: mdl-38957187

ABSTRACT

Transcranial direct current stimulation (tDCS) has been studied extensively for its potential to enhance human cognitive functions in healthy individuals and to treat cognitive impairment in various clinical populations. However, little is known about how tDCS modulates the neural networks supporting cognition and the complex interplay with mediating factors that may explain the frequently observed variability of stimulation effects within and between studies. Moreover, research in this field has been characterized by substantial methodological variability, frequent lack of rigorous experimental control and small sample sizes, thereby limiting the generalizability of findings and translational potential of tDCS. The present manuscript aims to delineate how these important issues can be addressed within a neuroimaging context, to reveal the neural underpinnings, predictors and mediators of tDCS-induced behavioral modulation. We will focus on functional magnetic resonance imaging (fMRI), because it allows the investigation of tDCS effects with excellent spatial precision and sufficient temporal resolution across the entire brain. Moreover, high resolution structural imaging data can be acquired for precise localization of stimulation effects, verification of electrode positions on the scalp and realistic current modeling based on individual head and brain anatomy. However, the general principles outlined in this review will also be applicable to other imaging modalities. Following an introduction to the overall state-of-the-art in this field, we will discuss in more detail the underlying causes of variability in previous tDCS studies. Moreover, we will elaborate on design considerations for tDCS-fMRI studies, optimization of tDCS and imaging protocols and how to assure high-level experimental control. Two additional sections address the pressing need for more systematic investigation of tDCS effects across the healthy human lifespan and implications for tDCS studies in age-associated disease, and potential benefits of establishing large-scale, multidisciplinary consortia for more coordinated tDCS research in the future. We hope that this review will contribute to more coordinated, methodologically sound, transparent and reproducible research in this field. Ultimately, our aim is to facilitate a better understanding of the underlying mechanisms by which tDCS modulates human cognitive functions and more effective and individually tailored translational and clinical applications of this technique in the future.

2.
Hum Brain Mapp ; 44(17): 5871-5891, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37721377

ABSTRACT

The brain is subjected to multi-modal sensory information in an environment governed by statistical dependencies. Mismatch responses (MMRs), classically recorded with EEG, have provided valuable insights into the brain's processing of regularities and the generation of corresponding sensory predictions. Only few studies allow for comparisons of MMRs across multiple modalities in a simultaneous sensory stream and their corresponding cross-modal context sensitivity remains unknown. Here, we used a tri-modal version of the roving stimulus paradigm in fMRI to elicit MMRs in the auditory, somatosensory and visual modality. Participants (N = 29) were simultaneously presented with sequences of low and high intensity stimuli in each of the three senses while actively observing the tri-modal input stream and occasionally reporting the intensity of the previous stimulus in a prompted modality. The sequences were based on a probabilistic model, defining transition probabilities such that, for each modality, stimuli were more likely to repeat (p = .825) than change (p = .175) and stimulus intensities were equiprobable (p = .5). Moreover, each transition was conditional on the configuration of the other two modalities comprising global (cross-modal) predictive properties of the sequences. We identified a shared mismatch network of modality general inferior frontal and temporo-parietal areas as well as sensory areas, where the connectivity (psychophysiological interaction) between these regions was modulated during mismatch processing. Further, we found deviant responses within the network to be modulated by local stimulus repetition, which suggests highly comparable processing of expectation violation across modalities. Moreover, hierarchically higher regions of the mismatch network in the temporo-parietal area around the intraparietal sulcus were identified to signal cross-modal expectation violation. With the consistency of MMRs across audition, somatosensation and vision, our study provides insights into a shared cortical network of uni- and multi-modal expectation violation in response to sequence regularities.


Subject(s)
Magnetic Resonance Imaging , Motivation , Humans , Acoustic Stimulation , Auditory Perception/physiology , Brain
3.
eNeuro ; 10(6)2023 06.
Article in English | MEDLINE | ID: mdl-37221090

ABSTRACT

The imagination of tactile stimulation has been shown to activate primary somatosensory cortex (S1) with a somatotopic specificity akin to that seen during the perception of tactile stimuli. Using fMRI and multivariate pattern analysis, we investigate whether this recruitment of sensory regions also reflects content-specific activation (i.e., whether the activation in S1 is specific to the mental content participants imagined). To this end, healthy volunteers (n = 21) either perceived or imagined three types of vibrotactile stimuli (mental content) while fMRI data were acquired. Independent of the content, during tactile mental imagery we found activation of frontoparietal regions, supplemented with activation in the contralateral BA2 subregion of S1, replicating previous reports. While the imagery of the three different stimuli did not reveal univariate activation differences, using multivariate pattern classification, we were able to decode the imagined stimulus type from BA2. Moreover, cross-classification revealed that tactile imagery elicits activation patterns similar to those evoked by the perception of the respective stimuli. These findings promote the idea that mental tactile imagery involves the recruitment of content-specific activation patterns in sensory cortices, namely in S1.


Subject(s)
Brain Mapping , Somatosensory Cortex , Humans , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/physiology , Parietal Lobe/physiology , Touch , Imagination/physiology , Magnetic Resonance Imaging
4.
Hum Brain Mapp ; 44(9): 3644-3668, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37067073

ABSTRACT

The human brain is constantly subjected to a multimodal stream of probabilistic sensory inputs. Electroencephalography (EEG) signatures, such as the mismatch negativity (MMN) and the P3, can give valuable insight into neuronal probabilistic inference. Although reported for different modalities, mismatch responses have largely been studied in isolation, with a strong focus on the auditory MMN. To investigate the extent to which early and late mismatch responses across modalities represent comparable signatures of uni- and cross-modal probabilistic inference in the hierarchically structured cortex, we recorded EEG from 32 participants undergoing a novel tri-modal roving stimulus paradigm. The employed sequences consisted of high and low intensity stimuli in the auditory, somatosensory and visual modalities and were governed by unimodal transition probabilities and cross-modal conditional dependencies. We found modality specific signatures of MMN (~100-200 ms) in all three modalities, which were source localized to the respective sensory cortices and shared right lateralized prefrontal sources. Additionally, we identified a cross-modal signature of mismatch processing in the P3a time range (~300-350 ms), for which a common network with frontal dominance was found. Across modalities, the mismatch responses showed highly comparable parametric effects of stimulus train length, which were driven by standard and deviant response modulations in opposite directions. Strikingly, P3a responses across modalities were increased for mispredicted stimuli with low cross-modal conditional probability, suggesting sensitivity to multimodal (global) predictive sequence properties. Finally, model comparisons indicated that the observed single trial dynamics were best captured by Bayesian learning models tracking unimodal stimulus transitions as well as cross-modal conditional dependencies.


Subject(s)
Auditory Perception , Electroencephalography , Humans , Bayes Theorem , Auditory Perception/physiology , Brain/diagnostic imaging , Brain/physiology , Hearing , Acoustic Stimulation , Evoked Potentials, Auditory/physiology
5.
Sci Rep ; 12(1): 17682, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271279

ABSTRACT

Sequential decision problems distill important challenges frequently faced by humans. Through repeated interactions with an uncertain world, unknown statistics need to be learned while balancing exploration and exploitation. Reinforcement learning is a prominent method for modeling such behaviour, with a prevalent application being the two-step task. However, recent studies indicate that the standard reinforcement learning model sometimes describes features of human task behaviour inaccurately and incompletely. We investigated whether active inference, a framework proposing a trade-off to the exploration-exploitation dilemma, could better describe human behaviour. Therefore, we re-analysed four publicly available datasets of the two-step task, performed Bayesian model selection, and compared behavioural model predictions. Two datasets, which revealed more model-based inference and behaviour indicative of directed exploration, were better described by active inference, while the models scored similarly for the remaining datasets. Learning using probability distributions appears to contribute to the improved model fits. Further, approximately half of all participants showed sensitivity to information gain as formulated under active inference, although behavioural exploration effects were not fully captured. These results contribute to the empirical validation of active inference as a model of human behaviour and the study of alternative models for the influential two-step task.


Subject(s)
Learning , Reinforcement, Psychology , Humans , Bayes Theorem , Uncertainty
6.
Hum Brain Mapp ; 43(12): 3721-3734, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35466500

ABSTRACT

The question how the brain distinguishes between information about self and others is of fundamental interest to both philosophy and neuroscience. In this functional magnetic resonance imaging (fMRI) study, we sought to distinguish the neural substrates of representing a full-body movement as one's movement and as someone else's movement. Participants performed a delayed match-to-sample working memory task where a retained full-body movement (displayed using point-light walkers) was arbitrarily labeled as one's own movement or as performed by someone else. By using arbitrary associations we aimed to address a limitation of previous studies, namely that our own movements are more familiar to us than movements of other people. A searchlight multivariate decoding analysis was used to test where information about types of movement and about self-association was coded. Movement specific activation patterns were found in a network of regions also involved in perceptual processing of movement stimuli, however not in early sensory regions. Information about whether a memorized movement was associated with the self or with another person was found to be coded by activity in the left middle frontal gyrus (MFG), left inferior frontal gyrus (IFG), bilateral supplementary motor area, and (at reduced threshold) in the left temporoparietal junction (TPJ). These areas are frequently reported as involved in action understanding (IFG, MFG) and domain-general self/other distinction (TPJ). Finally, in univariate analysis we found that selecting a self-associated movement for retention was related to increased activity in the ventral medial prefrontal cortex.


Subject(s)
Memory, Short-Term , Motor Cortex , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Humans , Magnetic Resonance Imaging/methods , Memory, Short-Term/physiology
7.
Sci Rep ; 12(1): 5778, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388047

ABSTRACT

Body perception has been extensively investigated, with one particular focus being the integration of vision and touch within a neuronal body representation. Previous studies have implicated a distributed network comprising the extrastriate body area (EBA), posterior parietal cortex (PPC) and ventral premotor cortex (PMv) during illusory self-attribution of a rubber hand. Here, we set up an fMRI paradigm in virtual reality (VR) to study whether and how the self-attribution of (artificial) body parts is altered if these body parts are somehow threatened. Participants (N = 30) saw a spider (aversive stimulus) or a toy-car (neutral stimulus) moving along a 3D-rendered virtual forearm positioned like their real forearm, while tactile stimulation was applied on the real arm in the same (congruent) or opposite (incongruent) direction. We found that the PPC was more activated during congruent stimulation; higher visual areas and the anterior insula (aIns) showed increased activation during aversive stimulus presentation; and the amygdala was more strongly activated for aversive stimuli when there was stronger multisensory integration of body-related information (interaction of aversiveness and congruency). Together, these findings suggest an enhanced processing of aversive stimuli within the amygdala when they represent a bodily threat.


Subject(s)
Artificial Limbs , Illusions , Touch Perception , Amygdala/diagnostic imaging , Humans , Illusions/physiology , Photic Stimulation , Touch Perception/physiology , Visual Perception/physiology
8.
J Neurosci ; 41(21): 4686-4696, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33849946

ABSTRACT

A central challenge in the study of conscious perception lies in dissociating the neural correlates of perceptual awareness from those reflecting its precursors and consequences. No-report paradigms have been instrumental in this endeavor, demonstrating that the event-related potential P300, recorded from the human scalp, reflects reports rather than awareness. However, these paradigms cannot probe the degree to which stimuli are consciously processed from trial to trial and, thus, leave open the possibility that the P300 is a genuine correlate of conscious access enabling reports. Here, instead of removing report requirements, we took the opposite approach and equated postperceptual task demands across conscious and unconscious trials by orthogonalizing target detection and overt reports in a somatosensory detection task. We used Bayesian model selection to track the transformation from physical to perceptual processing stages in the EEG data of 24 male and female participants and show that the early P50 component scaled with physical stimulus intensity, whereas the N140 component was the first correlate of target detection. The late P300 component was elicited for both perceived and unperceived stimuli and was not substantially modulated by target detection. This was in stark contrast to a control experiment using a classical direct report task, which replicated the P50 and N140 effects but additionally showed a strong effect of target detection in the P300 time range. Our results demonstrate the task dependence of the P300 in the somatosensory modality and show that late cortical potentials dissociate from perceptual awareness even when stimuli are always reported.SIGNIFICANCE STATEMENT The time it takes for sensory information to enter our conscious experience can be an indicator of the neural processing stages that lead to perceptual awareness. However, because many cognitive processes routinely correlate with perception, isolating those signals that uniquely reflect perceptual awareness is not a trivial task. Here, we show that late electroencephalography signals cease to correlate with somatosensory awareness when common task confounds are controlled. Importantly, by balancing report requirements instead of abolishing them, we show that the lack of late effects cannot be explained by a lack of conscious access. Instead, we propose that conscious access occurs earlier, at ∼150 ms, supporting the view that early activity in sensory cortices is a neural correlate of conscious perception.


Subject(s)
Awareness/physiology , Consciousness/physiology , Event-Related Potentials, P300/physiology , Adult , Electroencephalography , Female , Humans , Male
9.
Hum Brain Mapp ; 42(9): 2778-2789, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33694232

ABSTRACT

Both animal and human studies on numerosity have shown the importance of the parietal cortex for numerosity processing. However, most studies have focused on the perceptual processing of numerosity. Still, it is unclear how and where numerosity information is coded when this information is retained during a working memory delay phase. Such temporal storage could be realized by the same structures as perceptual processes, or be transformed to a more abstract representation, potentially involving prefrontal regions. FMRI decoding studies allow the identification of brain areas that exhibit multi-voxel activation patterns specific to the content of working memory. Here, we used an assumption-free searchlight-decoding approach to test where numerosity-specific codes can be found during a 12 s retention period. Participants (n = 24) performed a retro-cue delayed match-to-sample task, in which numerosity information was presented as visual dot arrays. We found mnemonic numerosity-specific activation in the right lateral portion of the intraparietal sulcus; an area well-known for perceptual processing of numerosity. The applied retro-cue design dissociated working memory delay activity from perceptual processes and showed that the intraparietal sulcus also maintained working memory representation independent of perception.


Subject(s)
Brain Mapping , Mathematical Concepts , Memory, Short-Term/physiology , Parietal Lobe/physiology , Pattern Recognition, Visual/physiology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Parietal Lobe/diagnostic imaging , Young Adult
10.
PLoS Comput Biol ; 17(2): e1008068, 2021 02.
Article in English | MEDLINE | ID: mdl-33529181

ABSTRACT

Tracking statistical regularities of the environment is important for shaping human behavior and perception. Evidence suggests that the brain learns environmental dependencies using Bayesian principles. However, much remains unknown about the employed algorithms, for somesthesis in particular. Here, we describe the cortical dynamics of the somatosensory learning system to investigate both the form of the generative model as well as its neural surprise signatures. Specifically, we recorded EEG data from 40 participants subjected to a somatosensory roving-stimulus paradigm and performed single-trial modeling across peri-stimulus time in both sensor and source space. Our Bayesian model selection procedure indicates that evoked potentials are best described by a non-hierarchical learning model that tracks transitions between observations using leaky integration. From around 70ms post-stimulus onset, secondary somatosensory cortices are found to represent confidence-corrected surprise as a measure of model inadequacy. Indications of Bayesian surprise encoding, reflecting model updating, are found in primary somatosensory cortex from around 140ms. This dissociation is compatible with the idea that early surprise signals may control subsequent model update rates. In sum, our findings support the hypothesis that early somatosensory processing reflects Bayesian perceptual learning and contribute to an understanding of its underlying mechanisms.


Subject(s)
Learning/physiology , Models, Neurological , Somatosensory Cortex/physiology , Adolescent , Adult , Algorithms , Bayes Theorem , Computational Biology , Electroencephalography/statistics & numerical data , Evoked Potentials, Somatosensory/physiology , Female , Humans , Male , Markov Chains , Models, Psychological , Young Adult
11.
Hum Brain Mapp ; 42(1): 245-258, 2021 01.
Article in English | MEDLINE | ID: mdl-33009881

ABSTRACT

Recent working memory (WM) research has focused on identifying brain regions that retain different types of mental content. Only few neuroimaging studies have explored the mechanism of attention-based refreshing, which is a type of rehearsal and is thought to implement the dynamic components of WM allowing for update of WM contents. Here, we took advantage of the distinct coding properties of the superior parietal lobe (SPL), which retains spatial layout information, and the right inferior frontal gyrus (IFG), which retains frequency information of vibrotactile stimuli during tactile WM. In an fMRI delayed match-to-sample task, participants had to internally rehearse sequences of spatial layouts or vibratory frequencies. Our results replicate the dissociation of SPL and IFG for the retention of layout and frequency information in terms of activation differences between conditions. Additionally, we found strong premotor cortex (PMC) activation during rehearsal of either stimulus type. To explore interactions between these regions we used dynamic causal modeling and found that activation within the network was best explained by a model that allows the PMC to drive activity in the SPL and IFG during rehearsal. This effect was content-specific, meaning that the PMC showed stronger influence on the SPL during pattern rehearsal and stronger influence on the IFG during frequency rehearsal. In line with previously established PMC contributions to sequence processing, our results suggest that it acts as a content-independent area that flexibly recruits content-specific regions to bring a WM item into the focus of attention during the rehearsal of tactile stimulus sequences.


Subject(s)
Brain Mapping , Memory, Short-Term/physiology , Motor Cortex/physiology , Parietal Lobe/physiology , Practice, Psychological , Space Perception/physiology , Touch Perception/physiology , Adult , Female , Fingers/physiology , Humans , Magnetic Resonance Imaging , Male , Motor Cortex/diagnostic imaging , Parietal Lobe/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Vibration , Young Adult
12.
Neuroimage ; 226: 117592, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33248258

ABSTRACT

Previous electrophysiological studies in monkeys and humans suggest that premotor regions are the primary loci for the encoding of perceptual choices during vibrotactile comparisons. However, these studies employed paradigms wherein choices were inextricably linked with the stimulus order and selection of manual movements. It remains largely unknown how vibrotactile choices are represented when they are decoupled from these sensorimotor components of the task. To address this question, we used fMRI-MVPA and a variant of the vibrotactile frequency discrimination task which enabled the isolation of choice-related signals from those related to stimulus order and selection of the manual decision reports. We identified the left contralateral dorsal premotor cortex (PMd) and intraparietal sulcus (IPS) as carrying information about vibrotactile choices. Our finding provides empirical evidence for an involvement of the PMd and IPS in vibrotactile decisions that goes above and beyond the coding of stimulus order and specific action selection. Considering findings from recent studies in animals, we speculate that the premotor region likely serves as a temporary storage site for information necessary for the specification of concrete manual movements, while the IPS might be more directly involved in the computation of choice. Moreover, this finding replicates results from our previous work using an oculomotor variant of the task, with the important difference that the informative premotor cluster identified in the previous work was centered in the bilateral frontal eye fields rather than in the PMd. Evidence from these two studies indicates that categorical choices in human vibrotactile comparisons are represented in a response modality-dependent manner.


Subject(s)
Brain/physiology , Choice Behavior/physiology , Touch Perception/physiology , Adolescent , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Vibration , Young Adult
13.
Front Behav Neurosci ; 14: 587152, 2020.
Article in English | MEDLINE | ID: mdl-33281576

ABSTRACT

Maladaptive risk taking can have severe individual and societal consequences; thus, individual differences are prominent targets for intervention and prevention. Although brain activation has been shown to be associated with individual differences in risk taking, the directionality of the reported brain-behavior associations is less clear. Here, we argue that one aspect contributing to the mixed results is the low convergence between risk-taking measures, especially between the behavioral tasks used to elicit neural functional markers. To address this question, we analyzed within-participant neuroimaging data for two widely used risk-taking tasks collected from the imaging subsample of the Basel-Berlin Risk Study (N = 116 young human adults). Focusing on core brain regions implicated in risk taking (nucleus accumbens, anterior insula, and anterior cingulate cortex), for the two tasks, we examined group-level activation for risky versus safe choices, as well as associations between local functional markers and various risk-related outcomes, including psychometrically derived risk preference factors. While we observed common group-level activation in the two tasks (notably increased nucleus accumbens activation), individual differences analyses support the idea that the presence and directionality of associations between brain activation and risk taking varies as a function of the risk-taking measures used to capture individual differences. Our results have methodological implications for the use of brain markers for intervention or prevention.

14.
Neuroimage ; 221: 117146, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32659356

ABSTRACT

Working memory (WM) representations are generally known to be influenced by task demands, but it is not clear whether this extends to the somatosensory domain. One way to investigate the influence of task demands is with categorization paradigms, wherein either a single stimulus or an associated category is maintained in WM. In the somatosensory modality, category representations have been identified in the premotor cortex (PMC) and the intraparietal sulcus (IPS). In this study we used multivariate-pattern-analysis with human fMRI data to investigate whether the WM representations in the PMC, IPS or other regions are influenced by changing task demands. We ensured the task-dependent, categorical WM information was decorrelated from stimulus features by (1) teaching participants arbitrary, non-rule based stimulus groupings and (2) contrasting identical pairs of stimuli across experimental conditions, where either a single stimulus or the associated group was maintained in WM. Importantly, we also decoupled the decision and motor output from the WM representations. With these experimental manipulations, we were able to pinpoint stimulus-specific WM information to the left frontal and parietal cortices and context-dependent, group-specific WM information to the left IPS. By showing that grouped stimuli are represented more similarly in the Group condition than in the Stimulus condition, free from stimulus and motor output confounds, we provide novel evidence for the adaptive nature of somatosensory WM representations in the IPS with changing task-demands.


Subject(s)
Adaptation, Physiological/physiology , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Memory, Short-Term/physiology , Parietal Lobe/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Touch Perception/physiology , Adult , Electric Stimulation , Female , Humans , Male , Parietal Lobe/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Sensory Thresholds/physiology , Young Adult
15.
eNeuro ; 7(1)2020.
Article in English | MEDLINE | ID: mdl-31919053

ABSTRACT

Estimated numerosity perception is processed in an approximate number system (ANS) that resembles the perception of a continuous magnitude. The ANS consists of a right lateralized frontoparietal network comprising the lateral prefrontal cortex (LPFC) and the intraparietal sulcus. Although the ANS has been extensively investigated, only a few studies have focused on the mental representation of retained numerosity estimates. Specifically, the underlying mechanisms of estimated numerosity working memory (WM) is unclear. Besides numerosities, as another form of abstract quantity, vibrotactile WM studies provide initial evidence that the right LPFC takes a central role in maintaining magnitudes. In the present fMRI multivariate pattern analysis study, we designed a delayed match-to-numerosity paradigm to test what brain regions retain approximate numerosity memoranda. In line with parametric WM results, our study found numerosity-specific WM representations in the right LPFC as well as in the supplementary motor area and the left premotor cortex extending into the superior frontal gyrus, thus bridging the gap in abstract quantity WM literature.


Subject(s)
Brain Mapping , Memory, Short-Term , Parietal Lobe , Humans , Magnetic Resonance Imaging , Parietal Lobe/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Touch
16.
Cereb Cortex ; 30(2): 607-617, 2020 03 21.
Article in English | MEDLINE | ID: mdl-31211363

ABSTRACT

Somatosensory input generated by one's actions (i.e., self-initiated body movements) is generally attenuated. Conversely, externally caused somatosensory input is enhanced, for example, during active touch and the haptic exploration of objects. Here, we used functional magnetic resonance imaging (fMRI) to ask how the brain accomplishes this delicate weighting of self-generated versus externally caused somatosensory components. Finger movements were either self-generated by our participants or induced by functional electrical stimulation (FES) of the same muscles. During half of the trials, electrotactile impulses were administered when the (actively or passively) moving finger reached a predefined flexion threshold. fMRI revealed an interaction effect in the contralateral posterior insular cortex (pIC), which responded more strongly to touch during self-generated than during FES-induced movements. A network analysis via dynamic causal modeling revealed that connectivity from the secondary somatosensory cortex via the pIC to the supplementary motor area was generally attenuated during self-generated relative to FES-induced movements-yet specifically enhanced by touch received during self-generated, but not FES-induced movements. Together, these results suggest a crucial role of the parietal operculum and the posterior insula in differentiating self-generated from externally caused somatosensory information received from one's moving limb.


Subject(s)
Cerebral Cortex/physiology , Motor Activity , Parietal Lobe/physiology , Somatosensory Cortex/physiology , Touch Perception/physiology , Touch/physiology , Adult , Brain Mapping , Female , Fingers , Forearm , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Physical Stimulation , Psychomotor Performance , Young Adult
17.
Neuroimage ; 201: 116011, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31302254

ABSTRACT

Recent studies suggest that a centro-parietal positivity (CPP) in the EEG signal tracks the absolute (unsigned) strength of accumulated evidence for choices that require the integration of noisy sensory input. Here, we investigated whether the CPP might also reflect the evidence for decisions based on a quantitative comparison between two sequentially presented stimuli (a signed quantity). We recorded EEG while participants decided whether the latter of two vibrotactile frequencies was higher or lower than the former in six variants of this task (n = 116). To account for biases in sequential comparisons, we applied a behavioral model based on Bayesian inference that estimated subjectively perceived frequency differences. Immediately after the second stimulus, parietal ERPs reflected the signed value of subjectively perceived differences and afterwards their absolute value. Strikingly, the modulation by signed difference was evident in trials without any objective evidence for either choice and correlated with choice-selective premotor beta band amplitudes. Modulations by the absolute strength of subjectively perceived evidence - a direct indicator of task difficulty - exhibited all features of statistical decision confidence. Together, our data suggest that parietal EEG signals first index subjective evidence, and later include a measure of confidence in the context of perceptual decision making.


Subject(s)
Decision Making/physiology , Parietal Lobe/physiology , Adult , Electroencephalography , Evoked Potentials/physiology , Female , Humans , Male , Touch Perception/physiology , Vibration , Young Adult
18.
Elife ; 82019 03 29.
Article in English | MEDLINE | ID: mdl-30924769

ABSTRACT

Research on somatosensory awareness has yielded highly diverse findings with putative neural correlates ranging from activity within somatosensory cortex to activation of widely distributed frontoparietal networks. Divergent results from previous studies may reside in cognitive processes that often coincide with stimulus awareness in experimental settings. To scrutinise the specific relevance of regions implied in the target detection network, we used functional magnetic resonance imaging (n = 27) on a novel somatosensory detection task that explicitly controls for stimulus uncertainty, behavioural relevance, overt reports, and motor responses. Using Bayesian Model Selection, we show that responses reflecting target detection are restricted to secondary somatosensory cortex, whereas activity in insular, cingulate, and motor regions is best explained in terms of stimulus uncertainty and overt reports. Our results emphasise the role of sensory-specific cortex for the emergence of perceptual awareness and dissect the contribution of the frontoparietal network to classical detection tasks.


Subject(s)
Brain Mapping , Electric Stimulation , Perception , Somatosensory Cortex/physiology , Adult , Female , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Young Adult
19.
Front Hum Neurosci ; 13: 10, 2019.
Article in English | MEDLINE | ID: mdl-30833894

ABSTRACT

To what degree mental imagery (MI) bears on the same neuronal processes as perception has been a central question in the neurophysiological study of imagery. Sensory-recruitment models suggest that imagery of sensory material heavily relies on the involvement of sensory cortices. Empirical evidence mainly stems from the study of visual imagery and suggests that it depends on the mentally imagined material whether hierarchically lower regions are recruited. However, evidence from other modalities is necessary to infer generalized principles. In this fMRI study we used the somatotopic organization of the primary somatosensory cortex (SI) to test in how far MI of tactile sensations activates topographically sensory brain areas. Participants (N = 19) either perceived or imagined vibrotactile stimuli on their left or right thumbs or big toes. The direct comparison to a corresponding perception condition revealed that SI was somatotopically recruited during imagery. While stimulus driven bottom-up processing induced activity throughout all SI subareas, i.e., BA1, BA3a, BA3b, and BA2 defined by probabilistic cytoarchitectonic maps, top-down recruitment during imagery was limited to the hierarchically highest subarea BA2.

20.
Neuroimage ; 193: 57-66, 2019 06.
Article in English | MEDLINE | ID: mdl-30849531

ABSTRACT

The study of perceptual decision making has made significant progress owing to major contributions from two experimental paradigms: the sequential vibrotactile frequency comparison task for the somatosensory domain requiring working memory, and the random-dot motion task in the visual domain requiring evidence accumulation over time. On the one hand, electrophysiological recordings in nonhuman primates and humans have identified changes in firing rates and power modulations of beta band oscillations with the vibrotactile frequencies held in working memory, as well as with the mental operation required for decision making. On the other hand, firing rates and centro-parietal potentials were found to increase to a fixed level at the time of responding during the random-dot motion task, possibly reflecting an underlying evidence accumulation mechanism until a decision threshold is met. Here, to bridge these two paradigms, we presented two visual random-dot motion stimuli in a sequential comparison task while recording EEG from human volunteers. We identified a modulation of prefrontal beta band power that scaled with the level of dot motion coherence of the first stimulus during a short retention interval. Furthermore, beta power in premotor areas was modulated by participants' choices approximately 700 ms before responses were given via button press. At the same time, dot motion patches of the second stimulus evoked a pattern of broadband centro-parietal signal build-up till responses were made, whose peak varied with trial difficulty. Hence, we show that known modulations of beta power during working memory and decision making extend from the vibrotactile to the visual domain and provide support for the notion of evidence accumulation as an unconfined decision-making mechanism generalizing over distinct decision types.


Subject(s)
Brain/physiology , Decision Making/physiology , Memory, Short-Term/physiology , Motion Perception/physiology , Neurons/physiology , Adult , Female , Humans , Male , Photic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL